Prediction of the properties of semiconductor Zn$_x$Mg$_y$O sol-gel layers using artificial neural networks
Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 28-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using artificial neural networks, the properties of semiconductor sol-gel layers of Zn$_x$Mg$_y$O were predicted. To form a training data set and a data set for testing neural networks by the sol-gel method, layers were formed based on ZnO : Mg films. The measurement of the photoelectric characteristics of the sol-gel coatings was carried out on an automated basic laser testing complex in accordance with National Standart-17772-88. The experiments were performed for 150 input parameters, 135 of which were used to train neural networks. In this work, we studied the influence of the architecture of neural networks on the accuracy of predicting the properties of Zn$_x$Mg$_y$O semiconductor sol-gel layers.
Keywords: neural network, sol-gel method, thin films.
@article{PFMT_2022_1_a3,
     author = {Y. V. Nikitjuk and A. V. Semchenko and V. V. Sidsky and K. D. Danilchenko and V. A. Prohorenko},
     title = {Prediction of the properties of semiconductor {Zn}$_x${Mg}$_y${O} sol-gel layers using artificial neural networks},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {28--32},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_1_a3/}
}
TY  - JOUR
AU  - Y. V. Nikitjuk
AU  - A. V. Semchenko
AU  - V. V. Sidsky
AU  - K. D. Danilchenko
AU  - V. A. Prohorenko
TI  - Prediction of the properties of semiconductor Zn$_x$Mg$_y$O sol-gel layers using artificial neural networks
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 28
EP  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_1_a3/
LA  - ru
ID  - PFMT_2022_1_a3
ER  - 
%0 Journal Article
%A Y. V. Nikitjuk
%A A. V. Semchenko
%A V. V. Sidsky
%A K. D. Danilchenko
%A V. A. Prohorenko
%T Prediction of the properties of semiconductor Zn$_x$Mg$_y$O sol-gel layers using artificial neural networks
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 28-32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_1_a3/
%G ru
%F PFMT_2022_1_a3
Y. V. Nikitjuk; A. V. Semchenko; V. V. Sidsky; K. D. Danilchenko; V. A. Prohorenko. Prediction of the properties of semiconductor Zn$_x$Mg$_y$O sol-gel layers using artificial neural networks. Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 28-32. http://geodesic.mathdoc.fr/item/PFMT_2022_1_a3/

[1] K. Liu, M.Sakurai, M. Aono, “ZnO-Based Ultraviolet Photodetectors”, Sensors, 10 (2010), 8604–8634 | DOI

[2] Q. Yuanshen et al., “Gradient bandgap narrowing in severely deformed ZnO nanoparticles”, Materials Research Letters, 9 (2021), 58–64 | DOI

[3] S.J. Priscilla et al., “Effect of magnesium dopant on the structural, morphological and electrical properties of ZnO nanoparticles by sol-gel method”, Materials Today: Proceedings, 36:4 (2021), 793–796 | DOI

[4] K. Gu et al., “Tailoring microstructure and optical properties of MgZnO film on glass by substrate temperature”, Materials Letters, 278 (2020), 128416 | DOI

[5] F. Baig, M.W. Ashraf, A. Asif, M. Imran, “A comparative analysis for effects of solvents on optical properties of Mg doped ZnO thin films for optoelectronic applications”, Optik, 208 (2020), 164534 | DOI

[6] Y. Caglar et al., “Magnesium-doped zinc oxide nanorod-nanotube semiconductor / p-silicon heterojunction diodes”, Applied Physics A, 122 (2016), 733 | DOI

[7] M. Loeza-Poot et al., “Novel sputtering method to obtain wide band gap and low resistivity in as-deposited magnesium doped zinc oxide films”, Materials Science in Semiconductor Processing, 104 (2019), 104646 | DOI

[8] S. Maensiri, P. Laokul, V. Promarak, “Synthesis and optical properties of nanocrystalline ZnO powders by a simple method using zinc acetate dihydrate and poly (vinyl pyrrolidone)”, Journal of Crystal Growth, 289 (2006), 102–106 | DOI

[9] W. Beyer, J. Hupkes, H. Stiebig, “Transparent conducting oxide films for thin film silicon”, Thin Sol. Films, 516 (2007), 147 | DOI

[10] A.Sh. Asvarov et al., “Structural and Optical Properties of Mg Doped ZnO Thin Films Deposited by DC Magnetron Sputtering”, Journal of Nano- and Electronic Physics, 8 (2016), 04053 | DOI

[11] B. Zhou et al., “Effects of oxygen / argon ratio and annealing on structural and optical properties of ZnO thin films”, Applied Surface Science, 258 (2012), 5759–5764 | DOI

[12] A.N. Bakhtiyari et al., “A review on applications of artificial intelligence in modeling and optimization of laser beam machining”, Optics Laser Technology, 135 (2021), 1–18

[13] V.A. Golovko, V.V. Krasnoproshin, Neirosetevye tekhnologii obrabotki dannykh, ucheb. posobie, BGU, Minsk, 2017, 263 pp.

[14] F. Sholle, Glubokoe obuchenie na Python, Piter, SPb., 2018, 400 pp.

[15] I.I. Kiryanov, Prognozirovanie khimicheskikh sdvigov YaMR $^{13}$S proizvodnykh fullerena S$_{60}$ s ispolzovaniem iskusstvennykh neironnykh setei, avtoreferat dis. ... kand. fiz.-mat. nauk, Ufa, 2021, 24 pp.

[16] A.A. Krasnoshchekov et al., “Identification of crack-like defects in elastic structural elements on the basis of evolution algorithms”, Russian Journal of Nondestructive Testing, 47:6 (2011), 412–419 | DOI

[17] Yu.V. Nikityuk i dr., “Primenenie iskusstvennykh neironnykh setei i metoda konechnykh elementov dlya opredeleniya parametrov obrabotki kvartsevykh zolgel stekol ellipticheskimi lazernymi puchkami”, Problemy fiziki, matematiki i tekhniki, 2021, no. 3 (48), 30–36

[18] V.V. Malyutina-Bronskaya i dr., “Fotoaktivnye svoistva nanokompozitsionnykh pokrytii ZnOKh: MgO, osazhdennykh v vakuume i metodom zol-gel sinteza”, Problemy fiziki, matematiki i tekhniki, 2021, no. 2 (47), 39–44

[19] V.V. Malyutina-Bronskaya i dr., “Avtomatizirovannyi bazovyi lazernyi ispytatelnyi kompleks dlya testirovaniya perspektivnykh vidov poluprovodnikovykh fotopriemnikov”, Sb. materialov 13-i mezhdunarodnoi nauchno-tekhnicheskoi konferentsii «Priborostroenie-2020» (18–20 noyabrya 2020 g., g. Minsk, Belarus), BITU, Minsk, 2020, 391–392