Shifted Bessel fields with various azimuthal dependences
Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 14-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The new solutions of the Helmholtz equation describing nondiffracting nonparaxial shifted Bessel wave fields with various azimuthal dependences are offered. They are characterised by five free parametres. Pictorial modelling of such beams is fulfilled. The dependences of the patterns of intensity of Bessel fields on the free parametres are analysed.
Keywords: beams, Bessel beams, azimuthal dependence, shifted fields, Bessel fields.
@article{PFMT_2022_1_a1,
     author = {S. S. Girgel},
     title = {Shifted {Bessel} fields with various azimuthal dependences},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {14--18},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_1_a1/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Shifted Bessel fields with various azimuthal dependences
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 14
EP  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_1_a1/
LA  - ru
ID  - PFMT_2022_1_a1
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Shifted Bessel fields with various azimuthal dependences
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 14-18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_1_a1/
%G ru
%F PFMT_2022_1_a1
S. S. Girgel. Shifted Bessel fields with various azimuthal dependences. Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 14-18. http://geodesic.mathdoc.fr/item/PFMT_2022_1_a1/

[1] J. Durnin, J.Jr. Miceli, “Diffraction - free beams”, Phys. Rev. Lett., 58:15 (1987), 1492–1501 | DOI

[2] J.A. Stretton, Electromagnetic Theory, McGraw-Hill Book Company, Inc., New York–London, 1941, 631 pp.

[3] A.P. Kiselev, “Lokalizovannye svetovye volny: paraksialnye i tochnye resheniya volnovogo uravneniya (obzor)”, Optika i spektroskopiya, 102:4 (2007), 661–681

[4] A.A. Kovalev, “Asimmetrichnye mody Besselya pervogo i vtorogo tipa i ikh superpozitsii”, Kompyuternaya optika, 39:1 (2016), 5–10

[5] A.B Plachenov, “Smeschennye paraksialnye puchki Besselya-Gaussa. I”, Opt. i spektr., 126:3 (2019), 311–318

[6] S. Chavez-Cerda, G.S. McDonald, G.H.C. New, “Nondiffracting beams: travelling, standing, rotating and spiral waves”, Opt. Communs., 123 (1996), 225–233 | DOI

[7] Rui-Pin Chen et al., “Effect of a spiral phase on a vector optical field with hybrid polarization states”, J. Opt., 17 (2015), 065605 | DOI

[8] S. Fu, S. Zhang, C. Gao, “Bessel beams with spatial oscillating polarization”, Sci. Per., 6:1 (2016), 30765

[9] R. Horak, Z. Bouchal, J. Bajer, “Nondiffracting stationary electromagnetic field”, Opt. Commun., 133 (1997), 315–327 | DOI

[10] V.V. Kotlyar, A.A. Kovalev, V.A. Soifer, “Asymmetric Bessel modes”, Optics Letters, 39:8 (2014), 2395–2398 | DOI

[11] V.V. Kotlyar, A.A. Kovalev, V.A. Soifer, “Diffraction-free asymmetric elegant Bessel beams with fractional orbital angular momentum”, Computer Optics, 38:1 (2014), 4–10 | DOI

[12] F.G. Mitri, “Acoustics of finite asymmetric exotic beams: Examples of Airy and fractional Bessel beams”, Journal of Applied Physics, 122 (2017), 224903 | DOI

[13] F.G. Mitri, “Vector wave analysis of an electromagnetic high-order Bessel vortex beam of fractional type”, Opt. Lett., 36 (2011), 606–608 | DOI

[14] F.G. Mitri, “Three-dimensional vectorial analysis of an electromagnetic non-diffracting highorder Bessel trigonometric beam”, Wave Motion, 49 (2012), 561–568 | DOI | MR | Zbl

[15] Shao Hua Tao, Woei Ming Lee, Xiaocong Yuan, “Experimental study of holographic generation of fractional Bessel beams”, Applied Optics, 43:1 (2004), 122–126 | DOI

[16] S.S. Girgel, “Bezdifraktsionnye asimmetrichnye volnovye polya Besselya nepreryvnogo poryadka”, Problemy fiziki, matematiki i tekhniki, 2017, no. 1 (30), 13–16

[17] E.G Abramochkin, V.G. Volostnikov, Sovremennaya optika gaussovykh puchkov, FIZMATLIT, M., 2010, 184 pp.

[18] D. Markuze, Opticheskie volnovody, Mir, M., 1974, 576 pp.

[19] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979, 830 pp. | MR

[20] NIST Handbook of Mathematical Functions, 2010, 498 pp. | Zbl

[21] Dzhon E. Midvinter, Volokonnye svetovody dlya peredachi informatsii, Radio i svyaz, M., 1983, 336 pp.

[22] A. Snaider, Dzh. Lav, Teoriya opticheskikh volnovodov, Radio i svyaz, M., 1987, 656 pp.

[23] A.M. Goncharenko, V.A. Karpenko, Osnovy teorii opticheskikh volnovodov, Nauka i tekhnika, Minsk, 1983, 237 pp.

[24] S.R. Seshadri, “Scalar modified Bessel-Gauss beams and waves”, J. Opt. Soc. Am. A, 24:9 (2007), 2837–2842 | DOI | MR

[25] Colin J. R. Sheppard et al., “Two-dimensional complex source point solutions: application to pro-pagationally invariant beams, optical fiber modes, planar waveguides, and plasmonic devices”, J. Opt. Soc. Am. A, 31:12 (2014), 2674–2679 | DOI

[26] S.R. Seshadri, “Electromagnetic Gaussian beam”, J. Opt. Soc. Am. A, 15:22 (1987), 2712–2719

[27] E. Skuchik, Osnovy akustiki, v. 2, Mir, M., 1976, 542 pp.