Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2022_1_a1, author = {S. S. Girgel}, title = {Shifted {Bessel} fields with various azimuthal dependences}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {14--18}, publisher = {mathdoc}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2022_1_a1/} }
S. S. Girgel. Shifted Bessel fields with various azimuthal dependences. Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 14-18. http://geodesic.mathdoc.fr/item/PFMT_2022_1_a1/
[1] J. Durnin, J.Jr. Miceli, “Diffraction - free beams”, Phys. Rev. Lett., 58:15 (1987), 1492–1501 | DOI
[2] J.A. Stretton, Electromagnetic Theory, McGraw-Hill Book Company, Inc., New York–London, 1941, 631 pp.
[3] A.P. Kiselev, “Lokalizovannye svetovye volny: paraksialnye i tochnye resheniya volnovogo uravneniya (obzor)”, Optika i spektroskopiya, 102:4 (2007), 661–681
[4] A.A. Kovalev, “Asimmetrichnye mody Besselya pervogo i vtorogo tipa i ikh superpozitsii”, Kompyuternaya optika, 39:1 (2016), 5–10
[5] A.B Plachenov, “Smeschennye paraksialnye puchki Besselya-Gaussa. I”, Opt. i spektr., 126:3 (2019), 311–318
[6] S. Chavez-Cerda, G.S. McDonald, G.H.C. New, “Nondiffracting beams: travelling, standing, rotating and spiral waves”, Opt. Communs., 123 (1996), 225–233 | DOI
[7] Rui-Pin Chen et al., “Effect of a spiral phase on a vector optical field with hybrid polarization states”, J. Opt., 17 (2015), 065605 | DOI
[8] S. Fu, S. Zhang, C. Gao, “Bessel beams with spatial oscillating polarization”, Sci. Per., 6:1 (2016), 30765
[9] R. Horak, Z. Bouchal, J. Bajer, “Nondiffracting stationary electromagnetic field”, Opt. Commun., 133 (1997), 315–327 | DOI
[10] V.V. Kotlyar, A.A. Kovalev, V.A. Soifer, “Asymmetric Bessel modes”, Optics Letters, 39:8 (2014), 2395–2398 | DOI
[11] V.V. Kotlyar, A.A. Kovalev, V.A. Soifer, “Diffraction-free asymmetric elegant Bessel beams with fractional orbital angular momentum”, Computer Optics, 38:1 (2014), 4–10 | DOI
[12] F.G. Mitri, “Acoustics of finite asymmetric exotic beams: Examples of Airy and fractional Bessel beams”, Journal of Applied Physics, 122 (2017), 224903 | DOI
[13] F.G. Mitri, “Vector wave analysis of an electromagnetic high-order Bessel vortex beam of fractional type”, Opt. Lett., 36 (2011), 606–608 | DOI
[14] F.G. Mitri, “Three-dimensional vectorial analysis of an electromagnetic non-diffracting highorder Bessel trigonometric beam”, Wave Motion, 49 (2012), 561–568 | DOI | MR | Zbl
[15] Shao Hua Tao, Woei Ming Lee, Xiaocong Yuan, “Experimental study of holographic generation of fractional Bessel beams”, Applied Optics, 43:1 (2004), 122–126 | DOI
[16] S.S. Girgel, “Bezdifraktsionnye asimmetrichnye volnovye polya Besselya nepreryvnogo poryadka”, Problemy fiziki, matematiki i tekhniki, 2017, no. 1 (30), 13–16
[17] E.G Abramochkin, V.G. Volostnikov, Sovremennaya optika gaussovykh puchkov, FIZMATLIT, M., 2010, 184 pp.
[18] D. Markuze, Opticheskie volnovody, Mir, M., 1974, 576 pp.
[19] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979, 830 pp. | MR
[20] NIST Handbook of Mathematical Functions, 2010, 498 pp. | Zbl
[21] Dzhon E. Midvinter, Volokonnye svetovody dlya peredachi informatsii, Radio i svyaz, M., 1983, 336 pp.
[22] A. Snaider, Dzh. Lav, Teoriya opticheskikh volnovodov, Radio i svyaz, M., 1987, 656 pp.
[23] A.M. Goncharenko, V.A. Karpenko, Osnovy teorii opticheskikh volnovodov, Nauka i tekhnika, Minsk, 1983, 237 pp.
[24] S.R. Seshadri, “Scalar modified Bessel-Gauss beams and waves”, J. Opt. Soc. Am. A, 24:9 (2007), 2837–2842 | DOI | MR
[25] Colin J. R. Sheppard et al., “Two-dimensional complex source point solutions: application to pro-pagationally invariant beams, optical fiber modes, planar waveguides, and plasmonic devices”, J. Opt. Soc. Am. A, 31:12 (2014), 2674–2679 | DOI
[26] S.R. Seshadri, “Electromagnetic Gaussian beam”, J. Opt. Soc. Am. A, 15:22 (1987), 2712–2719
[27] E. Skuchik, Osnovy akustiki, v. 2, Mir, M., 1976, 542 pp.