Modeling, creating and experimental study of metasurfaces covering objects of complex shape
Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 7-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, using computer-aided design programs, additive manufacturing means, such as numerically controlled equipment, the samples of metasurfaces for screening metal or metallized objects of a complex shape and reducing the reflection of radiation from them have been produced and experimentally studied.
Keywords: unit cell, ring resonator, electrical conductivity, transformation of radiation polarization, anechoic chamber
Mots-clés : metasurface element, radiation absorption coefficient.
@article{PFMT_2022_1_a0,
     author = {A. P. Balmakou and S. A. Khakhomov and I. V. Semchenko and J. Li and J. Wang and W. Song},
     title = {Modeling, creating and experimental study of metasurfaces covering objects of complex shape},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {7--13},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_1_a0/}
}
TY  - JOUR
AU  - A. P. Balmakou
AU  - S. A. Khakhomov
AU  - I. V. Semchenko
AU  - J. Li
AU  - J. Wang
AU  - W. Song
TI  - Modeling, creating and experimental study of metasurfaces covering objects of complex shape
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 7
EP  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_1_a0/
LA  - ru
ID  - PFMT_2022_1_a0
ER  - 
%0 Journal Article
%A A. P. Balmakou
%A S. A. Khakhomov
%A I. V. Semchenko
%A J. Li
%A J. Wang
%A W. Song
%T Modeling, creating and experimental study of metasurfaces covering objects of complex shape
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 7-13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_1_a0/
%G ru
%F PFMT_2022_1_a0
A. P. Balmakou; S. A. Khakhomov; I. V. Semchenko; J. Li; J. Wang; W. Song. Modeling, creating and experimental study of metasurfaces covering objects of complex shape. Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 7-13. http://geodesic.mathdoc.fr/item/PFMT_2022_1_a0/

[1] Z. Bao et al., “Inversion Method Characterization of Graphene-Based Coordination Absorbers Incorporating Periodically Patterned Metal Ring Metasurfaces”, Nanomaterials, 10:1102 (2020), 1–10

[2] J. Wang et al., “Independent tunable multi-band absorbers based on molybdenum disulfide metasurfaces”, Physical Chemistry Chemical Physics, 21:43 (2019), 24132–24138 | DOI

[3] Y. Feng et al., “Perfect Narrowband Absorber Based on Patterned Graphene-Silica Multilayer Hyperbolic Metamaterials”, Plasmonics, 2020, 1–6

[4] T. Xing et al., “Characteristics of a bidirectional multifunction focusing and plasmon-launching lens with multiple periscope-like waveguides”, Opt. Express., 28:14/6 (2020), 20334–20344 | DOI

[5] J. Ma et al., “THz Phase Modulation with Broadband Metasurfaces for Controlling Light Propagation”, Problems of Physics, Mathematics and Technics, 2018, no. 3 (36), 28–31

[6] A. Balmakou, M. Podalov, S. Khakhomov, D. Stavenga, I. Semchenko, “Ground-plane-less bidirectional terahertz absorber based on omega resonators”, Opt. Lett., 40:9 (2015), 2084–2087 | DOI

[7] A. Balmakou et al., “Designing of ultra-thin electromagnetic sensor using omega-particles”, Proc. of Chinese-Belarussian Workshop (Nanjing) (Nanging, China, 2019), 9–10

[8] I.V. Semchenko, “Radiation of circularly polarized microwaves by a plane periodic structure of $\Omega$ elements”, J. Commun. Technol. Electron., 52:9 (2007), 1002–1005 | DOI

[9] V.S. Asadchy et al., “Broadband reflectionless metasheets: Frequency-selective transmission and perfect absorption”, Phys. Rev. X, 5:3 (2015), 031005

[10] F.S. Cuesta et al., “Planar Broadband Huygens' Metasurfaces for Wave Manipulations”, IEEE Trans. Antennas Propag., 66:12 (2018), 7117 | DOI

[11] V.S. Asadchy et al., “Functional Metamirrors Using Bianisotropic Elements”, Phys. Rev. Lett., 114 (2015), 095503 | DOI

[12] V.S. Asadchy, A. Díaz-Rubio, S.A. Tretyakov, “Bianisotropic metasurfaces: physics and applications”, Nanophotonics, 7:6 (2018), 1069–1094 | DOI | MR

[13] I.V. Semchenko et al., “Electromagnetic waves in artificial chiral structures with dielectric and magnetic properties”, Electromagnetics, 21:5 (2001), 401–414 | DOI

[14] I.V. Semchenko, S.A. Khakhomov, “Artificial uniaxial bianisotropic media at oblique incidence of electromagnetic waves”, Electromagnetics, 22:1 (2002), 71–84 | DOI

[15] I. Semchenko et al., “Stored and absorbed energy of fields in lossy chiral single-component metamaterials”, Physical Review B, 97:1 (2018), 014432 | DOI

[16] I.V. Semchenko et al., “Investigation of electromagnetic properties of a high absorptive, weakly reflective metamaterial-substrate system with compensated chirality”, Journal of Applied Physics, 121 (2017), 015108-1–015108-8 | DOI

[17] I.V. Semchenko, S.A. Khakhomov, A.L. Samofalov, “Helices of optimal shape for nonreflecting covering”, The European physical journal. Applied physics, 49:3 (2010), ap09156 | DOI

[18] I.V. Semchenko, S.A. Khakhomov, Elektromagnitnye volny v metamaterialakh i spiralnykh strukturakh, monografiya, Belaruskaya navuka, Minsk, 2019, 279 pp.

[19] S. Yaoliang et al., Design of the Chiral Metamaterials, Tsinghua University Press, 2021, 297 pp.

[20] I.V. Semchenko i dr., “Metamaterialy i metapoverkhnosti”, Nauka i innovatsii, 2020, no. 8 (210), 23–27

[21] J.P. del Risco et al., “Optimal angular stability of reflectionless metasurface absorbers”, Phys. Rev. B, 103 (2021), 115426 | DOI

[22] Hu Jinlei et al., “High-performance terahertz refractive index sensor based on hybrid graphene Tamm structure”, Journal of the Optical Society of America B, 38:9 (2021), 2543–2550 | DOI

[23] Zhao Shaoguang et al., “Multi-focusing metalenses based on quadrangular frustum pyramid-shaped nanoantennas”, Photonics and Nanostructures - Fundamentals and Applications, 46 (2021), 100957 | DOI

[24] J. Hu et al., “High-Performance Tunable Multichannel Absorbers Coupled with Graphene-Based Grating and Dual-Tamm Plasmonic Structures”, Plasmonics, 17 (2021), 287–294 | DOI