Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2021_4_a13, author = {A. N. Dudin and Y. V. Sinyugina}, title = {Polling system with two markovian arrival pro{\cyrs}esses, finite buffers and phase type distribution of service and switching times}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {85--91}, publisher = {mathdoc}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2021_4_a13/} }
TY - JOUR AU - A. N. Dudin AU - Y. V. Sinyugina TI - Polling system with two markovian arrival proсesses, finite buffers and phase type distribution of service and switching times JO - Problemy fiziki, matematiki i tehniki PY - 2021 SP - 85 EP - 91 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2021_4_a13/ LA - ru ID - PFMT_2021_4_a13 ER -
%0 Journal Article %A A. N. Dudin %A Y. V. Sinyugina %T Polling system with two markovian arrival proсesses, finite buffers and phase type distribution of service and switching times %J Problemy fiziki, matematiki i tehniki %D 2021 %P 85-91 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2021_4_a13/ %G ru %F PFMT_2021_4_a13
A. N. Dudin; Y. V. Sinyugina. Polling system with two markovian arrival proсesses, finite buffers and phase type distribution of service and switching times. Problemy fiziki, matematiki i tehniki, no. 4 (2021), pp. 85-91. http://geodesic.mathdoc.fr/item/PFMT_2021_4_a13/
[1] V.M. Vishnevskii, O.V. Semenova, Sistemy pollinga: teoriya i primenenie v shirokopolosnykh besprovodnykh setyakh, Tekhnosfera, M., 2007, 312 pp.
[2] V. Vishnevsky, O. Semenova, “Polling Systems and Their Application to Telecommunication Networks”, Mathematics, 2021, no. 9 (117) | DOI | MR
[3] M.A.A. Boon, R.D. van der Mei, E.M.M. Winands, “Applications of polling systems”, Surveys in Operations Research and Management Science, 16:2 (2011), 67–82 | DOI
[4] H. Takagi, “Queuing Analysis of Polling Models”, ACM Computing Surveys, 20:1 (1988), 5–28 | DOI | MR | Zbl
[5] H. Levy, “Analysis of Cyclic Polling Systems with Binomial-gated Service”, Performance of Distributed Parallel Systems, eds. T. Hasegawa, H. Takagi, Y. Takahashi, Elsevier, Amsterdam, 1989, 127–139
[6] E. Altman, P. Konstantopoulos, Z. Liu, “Stability, monotonicity and invariant quantities in general polling systems”, Queueing Systems, 11 (1992), 35–57 | DOI | Zbl
[7] E. Altman, “Gated polling with stationary ergodic walking times, Markovian routing and random feedback”, Annals of Operations Research, 198 (2012), 145–164 | DOI | MR | Zbl
[8] A.N. Dudin, V.I. Klimenok, V.M. Vishnevsky, The Theory of Queuing Systems with Correlated Flows, Springer, Heidelberg, 2020, 430 pp. | Zbl
[9] D.M. Lucantoni, “New results on the single server queue with a batch Markovian arrival process”, Communications in Statistics. Part C: Stochastic Models, 7:1 (1991), 1–46 | DOI | MR | Zbl
[10] S. Chakravarthy, “The batch Markovian arrival process: a review and future work”, Advances in Probability Theory and Stochastic Processes, eds. A. Krishnamoorthy, N. Raju, V. Ramaswami, Notable, Branchburg, 2001, 21–49
[11] S.A. Dudin, O.S. Dudina, “Call center operation model as a MAP/PH/N/R-N system with impatient customers”, Problems of Information Transmission, 47:4 (2011), 364–377 | DOI | MR | Zbl
[12] G.P. Klimov, Stokhasticheskie sistemy obsluzhivaniya, Nauka, M., 1966, 244 pp.