Kink for modificated regularized long-wave equation
Problemy fiziki, matematiki i tehniki, no. 4 (2021), pp. 7-10

Voir la notice de l'article provenant de la source Math-Net.Ru

A new version of the modified regularized long-wave equation is considered. The equations of such a type are used as an alternative to the Korteweg-de Vries equation. A modification of the equation consists in an accounting the term which describes an interaction of dispersion and dissipation. Using the direct Hirota method for nonlinear equations in partial derivatives a kink-type (antikink-type) solution for modified equation is constructed. A possibility to construct a coupled solution of kink and antikink is analysed.
Keywords: regularized long-wave equation, kink, anti-kink, Hirota direct method.
@article{PFMT_2021_4_a0,
     author = {M. A. Knyazev},
     title = {Kink for modificated regularized long-wave equation},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {7--10},
     publisher = {mathdoc},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_4_a0/}
}
TY  - JOUR
AU  - M. A. Knyazev
TI  - Kink for modificated regularized long-wave equation
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 7
EP  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_4_a0/
LA  - ru
ID  - PFMT_2021_4_a0
ER  - 
%0 Journal Article
%A M. A. Knyazev
%T Kink for modificated regularized long-wave equation
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 7-10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_4_a0/
%G ru
%F PFMT_2021_4_a0
M. A. Knyazev. Kink for modificated regularized long-wave equation. Problemy fiziki, matematiki i tehniki, no. 4 (2021), pp. 7-10. http://geodesic.mathdoc.fr/item/PFMT_2021_4_a0/