Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2021_3_a6, author = {M. A. Serdyukova and A. N. Serdyukov}, title = {A massive gravitational field in flat spacetime. {IV.} {The} secular drift of atomic spectra and optics of type {Ia} supernovae}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {42--55}, publisher = {mathdoc}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PFMT_2021_3_a6/} }
TY - JOUR AU - M. A. Serdyukova AU - A. N. Serdyukov TI - A massive gravitational field in flat spacetime. IV. The secular drift of atomic spectra and optics of type Ia supernovae JO - Problemy fiziki, matematiki i tehniki PY - 2021 SP - 42 EP - 55 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2021_3_a6/ LA - en ID - PFMT_2021_3_a6 ER -
%0 Journal Article %A M. A. Serdyukova %A A. N. Serdyukov %T A massive gravitational field in flat spacetime. IV. The secular drift of atomic spectra and optics of type Ia supernovae %J Problemy fiziki, matematiki i tehniki %D 2021 %P 42-55 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2021_3_a6/ %G en %F PFMT_2021_3_a6
M. A. Serdyukova; A. N. Serdyukov. A massive gravitational field in flat spacetime. IV. The secular drift of atomic spectra and optics of type Ia supernovae. Problemy fiziki, matematiki i tehniki, no. 3 (2021), pp. 42-55. http://geodesic.mathdoc.fr/item/PFMT_2021_3_a6/
[1] E. Hubble, “A relation between distance and radial velocity among extra-galactic nebulae”, Proc. Nat. Acad. Sci., 15 (1929), 168–173 | DOI | Zbl
[2] E. Hubble, The Observational Approach to Cosmology, Oxford University Press, Oxford, 1937, 54 pp.
[3] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, New York, 1972, 657 pp.
[4] M.A. Serdyukova, A.N. Serdyukov, “A Massive Gravitational Field in Flat Spacetime. I. Gauge Invariance and Field Equations”, Problems of Physics, Mathematics and Technics, 2019, no. 2 (39), 45–53
[5] M.A. Serdyukova, A.N. Serdyukov, “A Massive Gravitational Field in Flat Spacetime. II. Conservation laws and gravitational variability of the inertial mass”, Problems of Physics, Mathematics and Technics, 2019, no. 3 (40), 33–39
[6] H.-Y. Chiu, W.F. Hoffmann, Gravitation and Relativity, eds. H.-Y. Chiu, W. F. Hoffmann, Benjamin, New York, 1964, 353 + xxxv pp. | Zbl
[7] R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics: Mainly Mechanics, Radiation, and Heat, Addison-Wesley, Reading, Massachusetts, 1963, 685 pp.
[8] L.B. Okun', “Reply to the letter “What is mass?” by R.I Khrapko”, Physics - Uspekhi, 43:12 (2000), 1270–1275 | DOI
[9] M. Kaku, Parallel Worlds: The Science of Alternative Universes and Our Future in the Cosmos, Allen Lane, London, 2004, 448 pp.
[10] L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, v. 2, The Classical theory of fields, Butterworth-Heinemann, Oxford, 1987, 428 pp.
[11] A.G. Riess et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant”, Astron. J., 116 (1998), 1009–1038 | DOI
[12] S. Perlmutter et al., “Measurements of $\Omega$ and $\Lambda$ from 42 highredshift supernovae”, Astrophys. J., 517 (1999), 565–586 | DOI
[13] B.P. Schmidt et al., “The high-z supernova search: Measuring cosmic deceleration and global curvature of the universe using Type IA supernovae”, Astrophys. J., 507 (1998), 46–63 | DOI
[14] F. Hoyle, J.V. Narlikar, “Cosmological Models in a Conformally Invariant Gravitational Theory. I. The Friedmann Models”, Mon. Not. R. astr. Soc., 155 (1972), 305–321 | DOI
[15] F. Hoyle, J.V. Narlikar, “Cosmological Models in a Conformally Invariant Gravitational Theory. II. A New Model”, Mon. Not. R. astr. Soc., 155 (1972), 323–335 | DOI
[16] J.V. Narlikar, H. Arp, “Flat spacetime cosmology: A unified framework for extragalactic redshifts”, Astrophys. J., 405 (1993), 51–56 | DOI
[17] E. Hubble, M. Humason, “The velocity-distance relation among extra-galactic nebulae”, Astrophys. J., 74 (1931), 43–80 | DOI
[18] P.A. Oesch et al., “A remarkably luminous galaxy at $Z = 11.1$ Measured with Hubble Space Telescope Grism Spectroscopy”, Astrophys. J., 819:2 (2016), 129, 11 pp. | DOI
[19] A. Zitrin et al., “Lyman-alpha emission from a luminous $z = 8.68$ galaxy: implications for galaxies as tracers of cosmic reionization”, Astrophys. J. Lett., 810:1 (2015), L12, 6 pp. | DOI
[20] F. Wang et al., “Luminous Quasar at Redshift 7.642”, Astrophys. J. Lett., 907 (2021), L1, 7 pp. | DOI
[21] E. Bañados et al., “An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5”, Nature, 553 (2018), 473–476 | DOI
[22] S.L. Finkelstein et al., “A galaxy rapidly forming stars 700 million ears after the Big Bang at redshift 7.51”, Nature, 502 (2013), 524–527 | DOI
[23] D.J. Mortlock et al., “A luminous quasar at a redshift of $z = 7.085$”, Nature, 474 (2011), 616–619 | DOI
[24] X. Fan et al., “The Discovery of a Gravitationally Lensed Quasar at $z = 6.51$”, Astrophys. J. Lett., 870:2 (2019), L11, 6 pp. | DOI
[25] S. Chandrasekhar, “The maximum mass of ideal white dwarfs”, Astrophys. J., 74 (1931), 81–82 | DOI | Zbl
[26] S. Chandrasekhar, An Introduction to the Study of Stellar Structure, University of Chicago Press, Illinois, 1939, 509 pp.
[27] S. Chandrasekhar, “On Stars, Their Evolution and Their Stability (Nobel Lecture)”, Angew. Chem. Int. Ed. Engl., 23 (1984), 679–689 | DOI
[28] D. Branch, G.A. Tammann, “Type Ia Supernovae as standard candles”, Annu. Rev. Astron. Astrophys., 30 (1992), 359–389 | DOI
[29] S.P.S. Anand, “On Chandrasekhar's limiting mass for rotating white dwarf stars”, Proc. Natl. Acad. Sci. USA, 54:1 (1965), 23–26 | DOI
[30] S.-C. Yoon, N. Langer, “Presupernova evolution of accreting white dwarfs with rotation”, Astron. Astrophys., 419 (2004), 623–644 | DOI
[31] N. Suzuki et al., “The Hubble Space Telescope Cluster Supernova Survey. V. Improving the dark-energy constraints above $z > 1$ and building an early-typehosted supernova sample”, Astrophys. J., 746 (2012), 85–108 | DOI
[32] D. Kasen, S.E. Woosley, “On the origin of the Type Ia Supernova width-luminosity relation”, Astrophys. J., 656 (2007), 661–665 | DOI
[33] M.A. Serdyukova, “A Massive Gravitational Field in Flat Spacetime. III. Gravitational variability of radioactive decay”, Problems of Physics, Mathematics and Technics, 2019, no. 3 (40), 40–42
[34] J.B. Oke, A. Sandage, “Energy distributions, K corrections, and the Stebbins - Whitford effect for giant elliptical galaxies”, Astrophys. J., 154 (1968), 21–32 | DOI
[35] E.Y. Hsiao et al., “K-Corrections and spectral templates of Type Ia Supernovae”, Astrophys. J., 663 (2007), 1187–1200 | DOI
[36] M. Rameez, S. Sarkar, Is there really a Hubble tension?, 2020, 6 pp., arXiv: 1911.06456v2
[37] M. Betoule et al., “Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples”, Astron. Astrophys., 568:A22 (2014), 32 pp.
[38] N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, 2018, 71 pp., arXiv: 1807.06209
[39] P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, 2014, 69 pp., arXiv: 1303.5076v3
[40] P.A.R. Ade et al., “Planck 2015 results. XIII. Cosmological parameters”, Astron. Astrophys., 594 (2016), 63 pp.