A massive gravitational field in flat spacetime. IV. The secular drift of atomic spectra and optics of type Ia supernovae
Problemy fiziki, matematiki i tehniki, no. 3 (2021), pp. 42-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

The cosmological application of the proposed early special-relativistic gauge-invariant theory of a massive gravitational field predicts the existence in the universe of a dynamical spatially uniform background gravitational field with a single non-zero time component, which dominates in Universe controlling its cyclic evolution through the balanced exchange of energy with gravitating matter. The previous and continuing increase in the rest energy of matter perfectly explains the cosmological redshift of atomic spectra without the hypothesis of a general recession of distant galaxies. The excellent numerical agreement of theory with the data from SNe Ia is achieved by fitting only two parameters: the age of the current cycle ($24$ Gyr) and the current value of the background scalar strength expressed through the Hubble constant ($68$ kms$^{-1}$ Mpc$^{-1}$). The predicted cosmological acceleration of the decay of unstable nuclei and particles is confirmed by $(1+z)$-stretching of the light curves of SNe Ia, the observed afterglow of which occurs owing to the high-energy gamma-ray photons released in the chain of beta decays ${}^{56}\mathrm{Ni}\to{}^{56}\mathrm{Co}\to{}^{56}\mathrm{Fe}$.
Keywords: background gravitational field, secular drift of atomic spectra, cosmological redshift, optical radiation of type Ia supernovae.
@article{PFMT_2021_3_a6,
     author = {M. A. Serdyukova and A. N. Serdyukov},
     title = {A massive gravitational field in flat spacetime. {IV.} {The} secular drift of atomic spectra and optics of type {Ia} supernovae},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {42--55},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_3_a6/}
}
TY  - JOUR
AU  - M. A. Serdyukova
AU  - A. N. Serdyukov
TI  - A massive gravitational field in flat spacetime. IV. The secular drift of atomic spectra and optics of type Ia supernovae
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 42
EP  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_3_a6/
LA  - en
ID  - PFMT_2021_3_a6
ER  - 
%0 Journal Article
%A M. A. Serdyukova
%A A. N. Serdyukov
%T A massive gravitational field in flat spacetime. IV. The secular drift of atomic spectra and optics of type Ia supernovae
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 42-55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_3_a6/
%G en
%F PFMT_2021_3_a6
M. A. Serdyukova; A. N. Serdyukov. A massive gravitational field in flat spacetime. IV. The secular drift of atomic spectra and optics of type Ia supernovae. Problemy fiziki, matematiki i tehniki, no. 3 (2021), pp. 42-55. http://geodesic.mathdoc.fr/item/PFMT_2021_3_a6/

[1] E. Hubble, “A relation between distance and radial velocity among extra-galactic nebulae”, Proc. Nat. Acad. Sci., 15 (1929), 168–173 | DOI | Zbl

[2] E. Hubble, The Observational Approach to Cosmology, Oxford University Press, Oxford, 1937, 54 pp.

[3] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, New York, 1972, 657 pp.

[4] M.A. Serdyukova, A.N. Serdyukov, “A Massive Gravitational Field in Flat Spacetime. I. Gauge Invariance and Field Equations”, Problems of Physics, Mathematics and Technics, 2019, no. 2 (39), 45–53

[5] M.A. Serdyukova, A.N. Serdyukov, “A Massive Gravitational Field in Flat Spacetime. II. Conservation laws and gravitational variability of the inertial mass”, Problems of Physics, Mathematics and Technics, 2019, no. 3 (40), 33–39

[6] H.-Y. Chiu, W.F. Hoffmann, Gravitation and Relativity, eds. H.-Y. Chiu, W. F. Hoffmann, Benjamin, New York, 1964, 353 + xxxv pp. | Zbl

[7] R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics: Mainly Mechanics, Radiation, and Heat, Addison-Wesley, Reading, Massachusetts, 1963, 685 pp.

[8] L.B. Okun', “Reply to the letter “What is mass?” by R.I Khrapko”, Physics - Uspekhi, 43:12 (2000), 1270–1275 | DOI

[9] M. Kaku, Parallel Worlds: The Science of Alternative Universes and Our Future in the Cosmos, Allen Lane, London, 2004, 448 pp.

[10] L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, v. 2, The Classical theory of fields, Butterworth-Heinemann, Oxford, 1987, 428 pp.

[11] A.G. Riess et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant”, Astron. J., 116 (1998), 1009–1038 | DOI

[12] S. Perlmutter et al., “Measurements of $\Omega$ and $\Lambda$ from 42 highredshift supernovae”, Astrophys. J., 517 (1999), 565–586 | DOI

[13] B.P. Schmidt et al., “The high-z supernova search: Measuring cosmic deceleration and global curvature of the universe using Type IA supernovae”, Astrophys. J., 507 (1998), 46–63 | DOI

[14] F. Hoyle, J.V. Narlikar, “Cosmological Models in a Conformally Invariant Gravitational Theory. I. The Friedmann Models”, Mon. Not. R. astr. Soc., 155 (1972), 305–321 | DOI

[15] F. Hoyle, J.V. Narlikar, “Cosmological Models in a Conformally Invariant Gravitational Theory. II. A New Model”, Mon. Not. R. astr. Soc., 155 (1972), 323–335 | DOI

[16] J.V. Narlikar, H. Arp, “Flat spacetime cosmology: A unified framework for extragalactic redshifts”, Astrophys. J., 405 (1993), 51–56 | DOI

[17] E. Hubble, M. Humason, “The velocity-distance relation among extra-galactic nebulae”, Astrophys. J., 74 (1931), 43–80 | DOI

[18] P.A. Oesch et al., “A remarkably luminous galaxy at $Z = 11.1$ Measured with Hubble Space Telescope Grism Spectroscopy”, Astrophys. J., 819:2 (2016), 129, 11 pp. | DOI

[19] A. Zitrin et al., “Lyman-alpha emission from a luminous $z = 8.68$ galaxy: implications for galaxies as tracers of cosmic reionization”, Astrophys. J. Lett., 810:1 (2015), L12, 6 pp. | DOI

[20] F. Wang et al., “Luminous Quasar at Redshift 7.642”, Astrophys. J. Lett., 907 (2021), L1, 7 pp. | DOI

[21] E. Bañados et al., “An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5”, Nature, 553 (2018), 473–476 | DOI

[22] S.L. Finkelstein et al., “A galaxy rapidly forming stars 700 million ears after the Big Bang at redshift 7.51”, Nature, 502 (2013), 524–527 | DOI

[23] D.J. Mortlock et al., “A luminous quasar at a redshift of $z = 7.085$”, Nature, 474 (2011), 616–619 | DOI

[24] X. Fan et al., “The Discovery of a Gravitationally Lensed Quasar at $z = 6.51$”, Astrophys. J. Lett., 870:2 (2019), L11, 6 pp. | DOI

[25] S. Chandrasekhar, “The maximum mass of ideal white dwarfs”, Astrophys. J., 74 (1931), 81–82 | DOI | Zbl

[26] S. Chandrasekhar, An Introduction to the Study of Stellar Structure, University of Chicago Press, Illinois, 1939, 509 pp.

[27] S. Chandrasekhar, “On Stars, Their Evolution and Their Stability (Nobel Lecture)”, Angew. Chem. Int. Ed. Engl., 23 (1984), 679–689 | DOI

[28] D. Branch, G.A. Tammann, “Type Ia Supernovae as standard candles”, Annu. Rev. Astron. Astrophys., 30 (1992), 359–389 | DOI

[29] S.P.S. Anand, “On Chandrasekhar's limiting mass for rotating white dwarf stars”, Proc. Natl. Acad. Sci. USA, 54:1 (1965), 23–26 | DOI

[30] S.-C. Yoon, N. Langer, “Presupernova evolution of accreting white dwarfs with rotation”, Astron. Astrophys., 419 (2004), 623–644 | DOI

[31] N. Suzuki et al., “The Hubble Space Telescope Cluster Supernova Survey. V. Improving the dark-energy constraints above $z > 1$ and building an early-typehosted supernova sample”, Astrophys. J., 746 (2012), 85–108 | DOI

[32] D. Kasen, S.E. Woosley, “On the origin of the Type Ia Supernova width-luminosity relation”, Astrophys. J., 656 (2007), 661–665 | DOI

[33] M.A. Serdyukova, “A Massive Gravitational Field in Flat Spacetime. III. Gravitational variability of radioactive decay”, Problems of Physics, Mathematics and Technics, 2019, no. 3 (40), 40–42

[34] J.B. Oke, A. Sandage, “Energy distributions, K corrections, and the Stebbins - Whitford effect for giant elliptical galaxies”, Astrophys. J., 154 (1968), 21–32 | DOI

[35] E.Y. Hsiao et al., “K-Corrections and spectral templates of Type Ia Supernovae”, Astrophys. J., 663 (2007), 1187–1200 | DOI

[36] M. Rameez, S. Sarkar, Is there really a Hubble tension?, 2020, 6 pp., arXiv: 1911.06456v2

[37] M. Betoule et al., “Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples”, Astron. Astrophys., 568:A22 (2014), 32 pp.

[38] N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, 2018, 71 pp., arXiv: 1807.06209

[39] P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, 2014, 69 pp., arXiv: 1303.5076v3

[40] P.A.R. Ade et al., “Planck 2015 results. XIII. Cosmological parameters”, Astron. Astrophys., 594 (2016), 63 pp.