Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2021_3_a4, author = {Yu. V. Nikitjuk and A. N. Serdyukov and V. A. Prohorenko and I. Y. Aushev}, title = {Application of artificial neural networks and finite element method for determining the parameters of elliptic laser beam treatment of quartz sol-gel glasses}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {30--36}, publisher = {mathdoc}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2021_3_a4/} }
TY - JOUR AU - Yu. V. Nikitjuk AU - A. N. Serdyukov AU - V. A. Prohorenko AU - I. Y. Aushev TI - Application of artificial neural networks and finite element method for determining the parameters of elliptic laser beam treatment of quartz sol-gel glasses JO - Problemy fiziki, matematiki i tehniki PY - 2021 SP - 30 EP - 36 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2021_3_a4/ LA - ru ID - PFMT_2021_3_a4 ER -
%0 Journal Article %A Yu. V. Nikitjuk %A A. N. Serdyukov %A V. A. Prohorenko %A I. Y. Aushev %T Application of artificial neural networks and finite element method for determining the parameters of elliptic laser beam treatment of quartz sol-gel glasses %J Problemy fiziki, matematiki i tehniki %D 2021 %P 30-36 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2021_3_a4/ %G ru %F PFMT_2021_3_a4
Yu. V. Nikitjuk; A. N. Serdyukov; V. A. Prohorenko; I. Y. Aushev. Application of artificial neural networks and finite element method for determining the parameters of elliptic laser beam treatment of quartz sol-gel glasses. Problemy fiziki, matematiki i tehniki, no. 3 (2021), pp. 30-36. http://geodesic.mathdoc.fr/item/PFMT_2021_3_a4/
[1] V.I. Arbuzov, Osnovy radiatsionnogo opticheskogo materialovedeniya, SPb GU ITMO, SPb, 2008, 284 pp.
[2] E.N. Poddenezhnyi, A.A. Boiko, Zol-gel sintez opticheskogo kvartsevogo stekla, UO «GGTU im. P.O. Sukhogo», Gomel, 2002, 210 pp.
[3] V.E. Borisovskii, Razvitie teorii i razrabotka kompleksa tekhnologii i oborudovaniya dlya lazernoi obrabotki kvartsevogo stekla, avtoref. dis. dokt. tekhn. nauk: 05.11.14, MGUPI, M., 2011, 36 pp.
[4] G.A. Machulka, Lazernaya obrabotka stekla, Sov. radio, M., 1979, 1979. - 136 pp.
[5] V.S. Kondratenko, Sposob rezki nemetallicheskikh materialov: pat. 2024441 RF, MKI 5 C03B33/02, zayavitel V. S. Kondratenko, zayavl. 04.02.92, opubl. 12.15.94
[6] S. Nisar, “Laser glass cutting techniques — A review”, Journal of Laser Applications, 25:4 (2013), 042010, 11 pp. | DOI
[7] Yu.V. Nikityuk, Fizicheskie zakonomernosti lazernogo termoraskalyvaniya silikatnykh stekol i alyumooksidnoi keramiki, dis. ... kand. fiz.-mat. nauk: 01.04.21, Gomel, 2009, 165 pp.
[8] S.V. Shalupaev, A.V. Semchenko, Y.V. Nikitjuk, “Silica gel glasses after laser radiation”, Material Science, 21:4 (2003), 495–501
[9] S.V. Shalupaev, V.V. Gaishun, A.V. Semchenko, Yu.V. Nikityuk, “Lazernaya obrabotka kvartsevykh stekol, sintezirovannykh zol-gel metodom”, Materialy. Tekhnologii. Instrumenty, 2005, no. 2, 70–73
[10] A.N. Bakhtiyari, Z. Wang, L. Wang, H. Zheng, “A review on applications of artificial intelligence in modeling and optimization of laser beam machining”, Optics Laser Technology, 135 (2021), 1–18
[11] V.A. Golovko, V.V. Krasnoproshin, Neirosetevye tekhnologii obrabotki dannykh, ucheb. posobie, BGU, Minsk, 2017, 263 pp.
[12] F. Sholle, Glubokoe obuchenie na Python, Piter, SPb., 2018, 400 pp.
[13] R. Kant, S.N. Joshi, U.S. Dixit, “An integrated FEM-ANN model for laser bending process with inverse estimation of absorptivity”, Mechanics of advanced materials and modern processes, 1 (2015), 1–12 | DOI
[14] A.N. Solovev, Z. Nguen, Ch. Zang, “Identifikatsiya krugovykh treschin, vykhodyaschikh na poverkhnosti trub s pomoschyu sochetaniya metoda konechnykh elementov i iskusstvennykh neironnykh setei”, Ekologicheskii vestnik nauchnykh tsentrov ChES, 2014, no. 1, 76–84
[15] Optimizatsiya prostranstvennykh konstruktsii na osnove gibridnoi neirosetevoi programmy, avtoreferat dis. ... kand. tekhn. nauk, Krasnoyarsk, 2005, 20 pp.
[16] M.B. Kadri, S. Nisar, S.Z. Khan, W.A. Khan, “Comparison of ANN and finite element model for the prediction of thermal stresses in diode laser cutting of float glass”, Optik - Int. J. Light Electron Optics, 126:19 (2015), 1959–1964 | DOI
[17] S. Rusia, K. Pathak, “Application of Artificial Neural Network for Analysis of Triangular Plate with Hole Considering Different Geometrical and Loading Parameters”, Open Journal of Civil Engineering, 6:1 (2016), 31–41 | DOI
[18] L. Segerlind, Primenenie metoda konechnykh elementov, Mir, M., 1979, 392 pp.
[19] N.N. Shabrov, Metod konechnykh elementov v raschetakh detalei teplovykh dvigatelei, Mashinostroenie, L., 1983, 212 pp.
[20] A.B. Kaplun, E.M. Morozov, M.A. Olfereva, ANSYS v rukakh inzhenera, prakticheskoe rukovodstvo, Editorial URSS, M., 2003, 272 pp.
[21] A.V. Chigarev, A.S. Kravchuk, A.F. Smalyuk, ANSYS dlya inzhenerov, spravochnoe posobie, Mashinostroenie, M., 2004, 512 pp.
[22] A.S. Shalumov i dr., Vvedenie v ANSYS: prochnostnoi i teplovoi analiz, uchebnoe posobie, KGTA, Kovrov, 2002, 52 pp.
[23] L.D. Kovalenko, Osnovy termouprugosti, Naukova dumka, Kiev, 1970, 307 pp.
[24] Yu.A. Kontsevoi, Yu.M. Litvinov, E.A. Fattkhov, Plastichnost i prochnost poluprovodnikovykh materialov i struktur, Radio i svyaz, M., 1982, 240 pp.
[25] V.L. Balkevich, Tekhnicheskaya keramika, ucheb. posobie dlya vtuzov, 2-e izd., Stroiizdat, M., 1984, 256 pp.
[26] S.M. Barinov, V.Ya. Shevchenko, Prochnost tekhnicheskoi keramiki, Nauka, M., 1996, 159 pp.
[27] G.P. Karzov, B.Z. Margolin, V.A. Shevtsova, Fiziko-mekhanicheskoe modelirovanie protsessov razrusheniya, Politekhnika, SPb., 1993, 391 pp.
[28] V.A. Levin, E.M. Morozov, Yu.G. Matvienko, Izbrannye nelineinye zadachi mekhaniki razrusheniya, FIZMATLIT, M., 2004, 408 pp.
[29] E.A. Kolenko, Tekhnologiya laboratornogo eksperimenta, spravochnik, Politekhnika, SPb., 1994, 751 pp.
[30] A.A. Krasnoshchekov, B.V. Sobol, A.N. Solov'ev, A.V. Cherpakov, “Identification of crack-like defects in elastic structural elements on the basis of evolution algorithms”, Russian Journal of Nondestructive Testing, 47:6 (2011), 412–419 | DOI