Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2021_3_a13, author = {V. S. Smorodin and V. A. Prokhorenko}, title = {Adaptive control system of a technological production process}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {96--102}, publisher = {mathdoc}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2021_3_a13/} }
V. S. Smorodin; V. A. Prokhorenko. Adaptive control system of a technological production process. Problemy fiziki, matematiki i tehniki, no. 3 (2021), pp. 96-102. http://geodesic.mathdoc.fr/item/PFMT_2021_3_a13/
[1] V.S. Smorodin, “Sistema upravleniya nadezhnostyu oborudovaniya veroyatnostnykh tekhnologicheskikh protsessov opasnogo proizvodstva”, Problemi programuvannya, 2007, no. 3, 107–123
[2] A.N. Goncharov, I.V. Maksimei, V.S. Smorodin, “Upravlenie rezervirovaniem i vosstanovitelnymi operatsiyami s pomoschyu imitatsionnogo modelirovaniya pri vozniknovenii otkazov v tekhnologicheskikh protsessakh opasnogo proizvodstva”, Problemy upravleniya i informatiki, 2007, no. 1, 48–60
[3] V.S. Smorodin, “Agregatnaya sistema avtomatizatsii modelirovaniya veroyatnostnykh tekhnologicheskikh protsessov proizvodstva”, Matematichni mashini i sistemi, 2007, no. 1, 105–110
[4] V.S. Smorodin, V.A. Prokhorenko, “Metod postroeniya modeli neiroregulyatora pri optimizatsii struktury upravleniya tekhnologicheskim tsiklom”, Doklady BGUIR, 2019, no. 7–8 (126), 125–132
[5] S. Osovskii, Neironnye seti dlya obrabotki informatsii, Finansy i statistika, M., 2002, 345 pp.
[6] S. Hochreiter, J. Schmidhuber, “Long shortterm memory”, Neural Computation, 9:8 (1997), 1735–1780 | DOI
[7] Y. Bengio, P. Simard, P. Frasconi, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, 5:2 (1994), 157–166 | DOI
[8] M.T. Hagan, H.B. Demuth, “Neural networks for control”, Proceedings of the American Control Conference (San Diego, USA, 1999), v. 3, 1642–1656
[9] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, The MIT Press, Cambridge, 1998
[10] J. Tsitsiklis, B.V. Roy, “An analysis of temporal-difference learning with function approximation”, IEEE Transactions on Automatic Control, 42 (1997), 674–690 | DOI | Zbl
[11] G.V. Cybenko, “Approximation by Superpositions of a Sigmoidal function”, Mathematics of Control Signals and Systems, 2:4 (1989), 303–314 | DOI | Zbl
[12] V. Mnih et al., “Human-level control through deep reinforcement learning”, Nature, 518:7540 (2015), 529–533 | DOI
[13] G. Lample, D.S. Chaplot, “Playing FPS Games with Deep Reinforcement Learning”, AAAI'17 Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI Press, 2017, 2140–2146
[14] D. Silver et al., “Mastering the game of Go without human knowledge”, Nature, 550 (2017), 354–359 | DOI
[15] M.T. Hagan, H.B. Demuth, M.H. Beale, Neural Network Design, PWS Publishing, Boston, MA, 1996
[16] G. Klambauer, T. Unterthiner, S. Hochreiter, “Self-Normalizing Neural Networks”, Advances in Neural Information Processing Systems, 30 (2017), 972–981