Modeling the process of separating multilayer heterogeneous glass structures along curved contours
Problemy fiziki, matematiki i tehniki, no. 2 (2021), pp. 64-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the framework of the theory of thermoelasticity, a comparative analysis of the fields of thermoelastic stresses arising in multilayer glass structures (triplex) in the process of two-beam controlled laser thermal cleavage is carried out. In this case, a series of channels perpendicular to the surface of the material is preliminarily applied along the processing line. It is shown that in the presence of channels, the magnitude of the maximum tensile stresses increases significantly and depends on the radius of the channels, the distance between them and the processing parameters. A series of applied channels along the machining line allows control of crack initiation and propagation along the machining line along curved paths.
Keywords: thermal cleavage, modeling, finite element method, temperature, triplex, thermoelastic stresses.
@article{PFMT_2021_2_a8,
     author = {S. V. Shalupaev and Yu. V. Nikitjuk and A. A. Sereda and I. Y. Aushev},
     title = {Modeling the process of separating multilayer heterogeneous glass structures along curved contours},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {64--68},
     publisher = {mathdoc},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_2_a8/}
}
TY  - JOUR
AU  - S. V. Shalupaev
AU  - Yu. V. Nikitjuk
AU  - A. A. Sereda
AU  - I. Y. Aushev
TI  - Modeling the process of separating multilayer heterogeneous glass structures along curved contours
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 64
EP  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_2_a8/
LA  - ru
ID  - PFMT_2021_2_a8
ER  - 
%0 Journal Article
%A S. V. Shalupaev
%A Yu. V. Nikitjuk
%A A. A. Sereda
%A I. Y. Aushev
%T Modeling the process of separating multilayer heterogeneous glass structures along curved contours
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 64-68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_2_a8/
%G ru
%F PFMT_2021_2_a8
S. V. Shalupaev; Yu. V. Nikitjuk; A. A. Sereda; I. Y. Aushev. Modeling the process of separating multilayer heterogeneous glass structures along curved contours. Problemy fiziki, matematiki i tehniki, no. 2 (2021), pp. 64-68. http://geodesic.mathdoc.fr/item/PFMT_2021_2_a8/

[1] S.V. Shalupaev (ruk.), Razrabotka tekhnologii termoraskalyvaniya anizotropnykh i mnogosloinykh neodnorodnykh struktur lazernymi puchkami spetsialnoi geometrii, otchet o NIR (zaklyuch.), No GR 20161487, GGU im. F. Skoriny, Gomel, 2021, 69 pp.

[2] S.V. Shalupaev, E.B. Shershnev, Yu.V. Nikityuk, A.A. Sereda, A. Evtukhov, Ustanovka dlya lazernoi rezki khrupkikh nemetallicheskikh materialov, Patent No 2164 RB, MKI$^7$ S 03V 33/02. Zayavka u 20050085, zayavleno 2005.04.22, opublikovano 2005.09.30

[3] S.V. Shalupaev, Yu.V. Nikityuk, A.A. Sereda, “Lazernoe termoraskalyvanie khrupkikh nemetallicheskikh materialov po zamknutym krivolineinym konturam”, Opticheskii zhurnal, 75:2 (2008), 11–15 | Zbl

[4] A.V. Fedin i dr., “Effekt zatyagivaniya izlucheniya CO$_2$-lazera v uzkii kanal pri obrabotke metallov kombinirovannym lazernym izlucheniem”, Izv. RAN. Ser. fiz., 63:10 (1999), 2053–2058

[5] S.A. Kakorin, V.L. Komolov, M.N. Libenson, “Osobennosti fotovozbuzhdeniya i raspredeleniya temperatury v poluprovodnike pri vstrechnom dvukhchastotnom vozdeistvii”, Pisma v ZhTF, 8:9 (1982), 513–517

[6] V.L. Komolov, M.N. Libenson, G.D. Shandybina, “Razogrev i lazernoe razrushenie poluprovodnikov”, Izvestiya AN SSSR, seriya fizicheskaya, 46:6 (1985), 1103–1110

[7] A.M. Bonch-Bruevich i dr., “Opticheskii proboi arsenida galliya pri impulsnom dvukhchastotnom vozdeistvii”, Pisma v ZhTF, 8:8 (1982), 507–510

[8] A.P. Gagarin, Issledovanie krupnomasshtabnogo vozdeistviya lazernogo izlucheniya na metally i stekla, avtoref. dis. ... d-r. fiz.-mat. nauk: 05.27.03, M., 1999, 40 pp.

[9] V.V. Kononenko i dr., “Modifikatsiya kvartsevogo stekla lazernymi impulsami femtosekundnoi dlitelnosti”, Kompyuternaya optika, 33:3 (2009), 254–259

[10] M.S. Sergeev, Issledovanie krupnomasshtabnogo vozdeistviya lazernogo izlucheniya na metally i stekla, dis. ... kand. tekhn. nauk: 01.04.05, SPb., 2016, 131 pp.

[11] S.V. Shalupaev, Yu.V. Nikityuk, A.A. Sereda, “Kombinirovannoe lazernoe termoraskalyvanie mnogosloinykh neodnorodnykh struktur iz stekla”, Yubileinaya nauchno-praktich. konf., posvyasch. 90-letiyu GGU im. F. Skoriny, materialy, v 3 ch. (Gomel, 19–20 noyabrya 2020 g.), eds. S.A. Khakhomov i dr., GGU im. F. Skoriny, Gomel, 2020, 191–194 | MR

[12] AGS. Technical Data Sheet – Planibel, , Ofitsialnyi sait AGS Glass UK Ltd. (Data dostupa: 10.03.2021) https://www.agcyourglass.com/

[13] Camilla fors. Mechanical properties of interlayers in laminated glass – Experimental and Numerical Evaluation, Master's Dissertation, Ofitsialnyi sait Lund University (Data dostupa: 20.03.2021) http://www.byggmek.lth.se

[14] Properties of soda-lime silica float glass, Technical Bulletin, , NSG group (Data dostupa: 10.04.2021) https://www.pilkington.com/resources/ats129propertiesofglass20130114.pdf

[15] GOST 9438-97. Plenka polivinilbutiralnaya kleyaschaya. Tekhnicheskie usloviya, Vved. 01.07.2002, Belor. gos. in-t standartizatsii i sertifikatsii, Mn., 2003, 29 pp.

[16] Properties of SGP and PVB, (Data dostupa: 10.04.2021) https://www.dupont.com/building.html

[17] Saflex\circledR Clear PVB interlayer, (Data dostupa: 10.04.2021) https://www.saflex.com/products

[18] I.K. Kikoin, V.G. Averin, B.A. Aronzon, Tablitsy fizicheskikh velichin, spravochnik, ed. I.K. Kikoin, Atomizdat, M., 1976, 1008 pp.

[19] Properties of SGP and PVB, (Data dostupa: 10.04.2021) https://www.dupont.com/building.html

[20] Ansys, (Data dostupa: 14.02.2021) https://ansys.com