Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2021_2_a7, author = {E. I. Starovoitov and Yu. M. Pleskatshevsky and A. V. Yarovaya}, title = {Deformation of a three-layer circular plate under creep conditions}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {57--63}, publisher = {mathdoc}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2021_2_a7/} }
TY - JOUR AU - E. I. Starovoitov AU - Yu. M. Pleskatshevsky AU - A. V. Yarovaya TI - Deformation of a three-layer circular plate under creep conditions JO - Problemy fiziki, matematiki i tehniki PY - 2021 SP - 57 EP - 63 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2021_2_a7/ LA - ru ID - PFMT_2021_2_a7 ER -
%0 Journal Article %A E. I. Starovoitov %A Yu. M. Pleskatshevsky %A A. V. Yarovaya %T Deformation of a three-layer circular plate under creep conditions %J Problemy fiziki, matematiki i tehniki %D 2021 %P 57-63 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2021_2_a7/ %G ru %F PFMT_2021_2_a7
E. I. Starovoitov; Yu. M. Pleskatshevsky; A. V. Yarovaya. Deformation of a three-layer circular plate under creep conditions. Problemy fiziki, matematiki i tehniki, no. 2 (2021), pp. 57-63. http://geodesic.mathdoc.fr/item/PFMT_2021_2_a7/
[1] A.G. Gorshkov, E.I. Starovoitov, A.V. Yarovaya, Mekhanika sloistykh vyazkouprugoplasticheskikh elementov konstruktsii, Fizmatlit, M., 2005, 576 pp.
[2] M.A. Zhuravkov, E.I. Starovoitov, Mekhanika sploshnykh sred. Teoriya uprugosti i plastichnosti, BGU, Minsk, 2011, 540 pp.
[3] E.I. Starovoitov, M.A. Zhuravkov, D.V. Leonenko, Trekhsloinye sterzhni v termoradiatsionnykh polyakh, Belaruskaya navuka, Minsk, 2017, 276 pp.
[4] K.G. Golovko, P.Z. Lugovoi, V.F. Meish, Dinamika neodnorodnykh obolochek pri nestatsionarnykh nagruzkakh, Kievskii un-t, Kiev, 2012, 541 pp.
[5] Yu.M. Pleskachevskii, E.I. Starovoitov, A.V. Yarovaya, Dinamika metallopolimernykh sistem, Bel. navuka, Minsk, 2004, 386 pp.
[6] D.V. Tarlakovskii, G.V. Fedotenkov, “Two-Dimensional Nonstationary Contact of Elastic Cylindrical or Spherical Shells”, Journal of Machinery Manufacture and Reliability, 43:2 (2014), 145–152 | DOI | MR
[7] A.G. Gorshkov, E.I. Starovoitov, A.V. Yarovaya, “Garmonicheskie kolebaniya trekhsloinoi tsilindricheskoi vyazkouprugoplasticheskoi obolochki”, Prikladnaya mekhanika, 2001, no. 9, 100–107
[8] V.N. Paimushin, “Theory of moderately large deflections of sandwich shells having a transversely soft core and reinforced along their contour”, Mechanics of Composite Materials, 53:1 (2017), 3–26 | DOI
[9] E.I. Starovoitov, D.V. Leonenko, D.V. Tarlakovskii, “Rezonansnye kolebaniya krugovykh kompozitnykh plastin na uprugom osnovanii”, Mekhanika kompozitnykh materialov, 51:5 (2015), 793–806
[10] V.S. Deshpande, N.A. Fleck, “Dynamic Response of a Clamped Circular Sandwich Plate Subject to Shock Loading”, J. Appl. Mech., 71:5 (2004), 637–645 | DOI | Zbl
[11] E.I. Starovoitov, A.V. Yarovaya, D.V. Leonenko, “Deformirovanie uprugogo trekhsloinogo sterzhnya lokalnymi nagruzkami”, Problemy mashinostroeniya i avtomatizatsii, 2001, no. 4, 37–40
[12] L. Škec, G. Jelenić, “Analysis of a geometrically exact multi-layer beam with a rigid interlayer connection”, Acta Mechanica, 225:2 (2014), 523–541 | DOI | MR
[13] J. Belinha, L.M. Dints, “Nonlinear Analysis of Plates and Laminates Using the Element Free Galerkin Method”, Composite Structures, 78:3 (2007), 337–350 | DOI
[14] D. Julien, S. Karam, “Limit analysis of multi-layered plates. Part II: The Homogenesized Love-Kirchhoff Model”, Journal of the Mechanics and Physics of Solids, 56:2 (2008), 561–580 | DOI | MR | Zbl
[15] V.V. Moskvitin, E.I. Starovoitov, “Deformatsiya i peremennye nagruzheniya dvukhsloinykh metallopolimernykh plastin”, Mekhanika kompozitnykh materialov, 1985, no. 3, 409–416
[16] A.G. Kozel, “Peremescheniya v krugovoi trekhsloinoi plastine na dvukhparametricheskom osnovanii”, Mekhanika. Issledovaniya i innovatsii, 2017, no. 10, 90–95
[17] A.G. Kozel, “Matematicheskaya model deformirovaniya krugovoi trekhsloinoi plastiny na osnovanii Pasternaka”, Problemy fiziki, matematiki i tekhniki, 2017, no. 1 (30), 42–46
[18] A.G. Kozel, “Vliyanie sdvigovoi zhestkosti osnovaniya na napryazhennoe sostoyanie sendvich-plastiny”, Fundamentalnye i prikladnye problemy tekhniki i tekhnologii, 2018, no. 6 (332), 25–35
[19] Yu.V. Zakharchuk, “Deformirovanie krugovoi trekhsloinoi plastiny so szhimaemym zapolnitelem”, Problemy fiziki, matematiki i tekhniki, 2017, no. 4 (4), 53–57
[20] Yu.V. Zakharchuk, “Peremescheniya v krugovoi trekhsloinoi plastine so szhimaemym zapolnitelem”, Mekhanika. Issledovaniya i innovatsii, 2017, no. 10, 55–66
[21] Yu.V. Zakharchuk, “Trekhsloinaya krugovaya uprugoplasticheskaya plastina so szhimaemym zapolnitelem”, Problemy fiziki, matematiki i tekhniki, 2018, no. 4 (37), 72–79
[22] E.I. Starovoitov, “Termosilovoe nagruzhenie trekhsloinykh pologikh obolochek”, Izv. AN SSSR. Mekhanika tverdogo tela, 1989, no. 5, 114–119
[23] E.I. Starovoitov, D.V. Leonenko, D.V. Tarlakovskii, “Deformirovanie trekhsloinoi krugovoi tsilindricheskoi obolochki v temperaturnom pole”, Problemy mashinostroeniya i avtomatizatsii, 2016, no. 1, 91–97
[24] A.S. Zelenaya, “Napryazhenno-deformirovannoe sostoyanie termouprugoi trekhsloinoi pryamougolnoi plastiny so szhimaemym zapolnitelem”, Izvestiya Gomelskogo gos. un-ta im. F. Skoriny. Estestvennye nauki, 2018, no. 6 (111), 98–104
[25] M.A. Zenkour, N.A. Alghamdi, “Thermomechanical bending response of functionally graded nonsymmetric sandwich plates”, Journal of Sandwich Structures and Materials, 12:1 (2010), 7–46 | DOI
[26] A.M. Zenkour, N.A. Alghamdi, “Bending Analysis of Functionally Graded Sandwich Plates under the Effect of Mechanical and Thermal Loads”, Mechanics of Advanced Materials and Structures, 17:6 (2010), 419–432 | DOI
[27] A.V. Nesterovich, “Neosesimmetrichnoe termosilovoe deformirovanie krugovoi odnosloinoi plastiny”, Problemy fiziki, matematiki i tekhniki, 2016, no. 2 (27), 54–61
[28] A.V. Nesterovich, “Napryazheniya v krugovoi plastine tipa Timoshenko pri neosesimmetrichnom rastyazhenii-szhatii”, Mekhanika. Issledovaniya i innovatsii, 2018, no. 11, 195–203
[29] A.V. Nesterovich, “Napryazhennoe sostoyanie krugovoi trekhsloinoi plastiny pri osesimmetrichnom nagruzhenii v svoei ploskosti”, Mekhanika. Issledovaniya i innovatsii, 2019, no. 12, 152–157
[30] V.A. Nifagin, M.A. Bubich, “Metod asimptoticheskikh razlozhenii v teorii uprugoplasticheskikh treschin”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizika-matematychnykh navuk, 2011, no. 4, 60–66
[31] M.A. Gundina, “Energeticheskie invarianty v teorii uprugoplasticheskikh treschin”, Nauka i tekhnika, 16:4 (2017), 355–362
[32] M.A. Gundina, “Opredelenie nachalnogo napravleniya razvitiya treschiny v moment stragivaniya”, Problemy fiziki, matematiki i tekhniki, 2019, no. 1 (38), 40–44
[33] A.A. Ilyushin, B.E. Pobedrya, Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970, 280 pp.
[34] E. Yanke, F. Emde, F. Lesh, Spetsialnye funktsii, Nauka, M., 1979, 342 pp.