Approach for determination of ballistic coefficient of an tail aerodynamic object
Problemy fiziki, matematiki i tehniki, no. 2 (2021), pp. 90-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

Possible methods are considered and a computational experiment technique for calculating the aerodynamic characteristics of feathered aerodynamic objects is proposed. Its verification was carried out on an object of simple shape (cone + cylinder) with subsequent matching of the obtained values for the object under study with the available experimental data. The shape coefficients and drag coefficients are calculated depending on the Mach number for an aerodynamic object with two forms of the head by the method of a computational experiment. Ballistic coefficients are obtained according to the laws of 1943 and 1958, as well as according to the Siacci law as functions of the Mach number. The obtained drag coefficients will be used for calculation of the initial data for launching the aerodynamic object.
Keywords: aerodynamic object, body flow simulation
Mots-clés : drag coefficient, ballistic coefficient.
@article{PFMT_2021_2_a13,
     author = {A. Ph. Ilyushchanka and O. K. Kryvanos and A. D. Chorny},
     title = {Approach for determination of ballistic coefficient of an tail aerodynamic object},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {90--97},
     publisher = {mathdoc},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_2_a13/}
}
TY  - JOUR
AU  - A. Ph. Ilyushchanka
AU  - O. K. Kryvanos
AU  - A. D. Chorny
TI  - Approach for determination of ballistic coefficient of an tail aerodynamic object
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 90
EP  - 97
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_2_a13/
LA  - ru
ID  - PFMT_2021_2_a13
ER  - 
%0 Journal Article
%A A. Ph. Ilyushchanka
%A O. K. Kryvanos
%A A. D. Chorny
%T Approach for determination of ballistic coefficient of an tail aerodynamic object
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 90-97
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_2_a13/
%G ru
%F PFMT_2021_2_a13
A. Ph. Ilyushchanka; O. K. Kryvanos; A. D. Chorny. Approach for determination of ballistic coefficient of an tail aerodynamic object. Problemy fiziki, matematiki i tehniki, no. 2 (2021), pp. 90-97. http://geodesic.mathdoc.fr/item/PFMT_2021_2_a13/

[1] Yu.C. Pavlyuk, Ballisticheskoe proektirovanie raket, uchebnoe posobie dlya vuzov, Izd-vo ChGTU, Chelyabinsk, 1996, 92 pp.

[2] V.I. Bimatov, V.D. Merzlyakov, V.P. Stepanov, Vneshnyaya ballistika, uchebnoe posobie, v. 1, Izd-vo Tomskogo un-ta, Tomsk, 1993, 168 pp.

[3] V.E. Alemasov, A.F. Dregalin, A.P. Tishin, Teoriya raketnykh dvigatelei, uchebnik dlya studentov vysshikh tekhnicheskikh uchebnykh zavedenii, ed. V.P. Glushko, Mashinostroenie, M., 1989, 464 pp.

[4] F.P. Miropolskii i dr., Aviatsionnye sredstva porazheniya, ed. F.P. Miropolskii, Voennoe izd-vo, M., 1995, 255 pp.

[5] D.I. Gladkov i dr., Boevaya aviatsionnaya tekhnika: aviatsionnoe vooruzhenie, ed. D.I. Gladkov, Voennoe izd-vo, M., 1987, 279 pp.

[6] GOST V 24288-80 «Snaryady neupravlyaemye artilleriiskie, reaktivnye, aktivno-reaktivnye. Metod rascheta traektorii poleta», gosudarstvennyi voennyi standart RB, 55 pp.

[7] A.M. Kharitonov, Tekhnika i metody aerofizicheskogo eksperimenta, uchebnik, v. 1, Aerodinamicheskie truby i gazodinamicheskie ustanovki, Izd-vo NGTU, Novosibirsk, 2005, 220 pp.

[8] N.P. Alabova i dr., “Rol kompyuternogo modelirovaniya i fizicheskogo eksperimenta v issledovaniyakh aerogazodinamiki raketno-kosmicheskikh sistem v protsesse proektirovaniya”, Kosmicheskaya tekhnika i tekhnologii, 2014, no. 3 (6), 14–21

[9] A.M. Molchanov, Matematicheskoe modelirovanie zadach gazodinamiki i teplomassoobmena, monografiya, Izd-vo MAI, M., 2013, 206 pp.

[10] D.C. Wilcox, Turbulence modeling for CFD, DCW Industries Inc., La Canada, California, 1998, 537 pp.

[11] S. Patankar, Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Energoizdat, M., 1984, 152 pp.

[12] ANSYS FLUENT CAE Expert, (Data dostupa: 16.03.2021) https://cae-expert.ru/product/ansys-fluent

[13] A.V. Garbaruk, M.Kh. Strelets, M.L. Shur, Modelirovanie turbulentnosti v raschetakh slozhnykh techenii, Izd-vo Politekhn. un-ta, SPb, 2012, 88 pp.

[14] F.R. Menter, “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications”, AIAA Journal, 32:8 (1994), 1598–1605 | DOI

[15] N.B. Vargaftik, Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei, Fizmatlit, M., 1963, 708 pp.

[16] V.A. Pashkov, Teplo-massoobmen na poverkhnosti elementov konstruktsii giperzvukovykh letatelnykh apparatov samoletnykh skhem pri polete v atmosfere, dis. ... k.t.n.: 01.04.14, M., 2017, 148 pp.

[17] K.P. Petrov, Aerodinamika tel prosteishikh form, Faktorial, M., 1998, 432 pp.

[18] M. Van-Daik, Albom techeniya zhidkosti i gaza, Mir, M., 1986, 184 pp.

[19] A.A. Konovalov, Yu.V. Nikolaev, Vneshnyaya ballistika, TsNII informatsii, M., 1979, 228 pp.

[20] A.I. Sychev, V.G. Martirosyan, V.A. Pereskokov, Neupravlyaemye aviatsionnye rakety kalibra 80 mm, uchebnoe posobie, Izd-vo MAI, M., 2019, 76 pp.