A $\sigma$-solubility criterion of a finite group
Problemy fiziki, matematiki i tehniki, no. 2 (2021), pp. 84-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

Throughout this paper, all groups are finite and $G$ always denotes a finite group. Moreover, $\sigma$ is some partition of the set of all primes $\mathbb{P}$, that is, $\sigma=\{\sigma_i\mid i\in I\}$, where $\mathbb{P}=\bigcup_{i\in I}\sigma_i$ and $\sigma_i\cap\sigma_j=\varnothing$ for all $i\ne j$. A set $\mathcal{H}$ of subgroups of $G$ is a complete Hall $\sigma$-set of $G$ if every member $\ne 1$ of $\mathcal{H}$ is a Hall $\sigma_i$-subgroup of $G$ for some $\sigma_i\in\sigma$ and $\mathcal{H}$ contains exactly one Hall $\sigma_i$-subgroup of $G$ for every $\sigma_i\in\sigma(G)$. A subgroup $A$ of $G$ is said to be: $\sigma_i$-permutable in $G$ if $G$ possesses a complete Hall $\sigma$-set $\mathcal{H}$ such that $AH^x=H^xA$ for all $H\in\mathcal{H}$ and all $x\in G$; $\sigma$-subnormal in $G$ if there is a subgroup chain $A=A_0\leqslant A_1\leqslant\dots\leqslant A_n=G$ such that either $A_{i-1}\unlhd A_i$ or $A_i/(A_{i-1})_{A_i}$ is $\sigma$-primary for all $i=1,\dots,n$. A subgroup $A$ of $G$ is said to be weakly $\sigma$-permutable in $G$ if there is a $\sigma$-permutable subgroup $S$ and a $\sigma$-subnormal subgroup $T$ of $G$ such that $G=AT$ and $A\cap T\leqslant S\leqslant A$. In this paper it is proved that if in every maximal chain $M_3$ of $G$ of length $3$ at least one of the subgroups $M_3$, $M_2$, or $M_1$ is either submodular or weakly $\sigma$-permutable in $G$, then $G$ is $\sigma$-soluble.
Keywords: finite group, $\sigma$-subnormal subgroup, $\sigma$-permutable subgroup, weakly $\sigma$-permutable subgroup, modular subgroup.
Mots-clés : $\sigma$-soluble group
@article{PFMT_2021_2_a12,
     author = {V. M. Sel'kin and I. V. Blisnets and V. S. Zakrevskaya},
     title = {A $\sigma$-solubility criterion of a finite group},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {84--89},
     publisher = {mathdoc},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_2_a12/}
}
TY  - JOUR
AU  - V. M. Sel'kin
AU  - I. V. Blisnets
AU  - V. S. Zakrevskaya
TI  - A $\sigma$-solubility criterion of a finite group
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 84
EP  - 89
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_2_a12/
LA  - ru
ID  - PFMT_2021_2_a12
ER  - 
%0 Journal Article
%A V. M. Sel'kin
%A I. V. Blisnets
%A V. S. Zakrevskaya
%T A $\sigma$-solubility criterion of a finite group
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 84-89
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_2_a12/
%G ru
%F PFMT_2021_2_a12
V. M. Sel'kin; I. V. Blisnets; V. S. Zakrevskaya. A $\sigma$-solubility criterion of a finite group. Problemy fiziki, matematiki i tehniki, no. 2 (2021), pp. 84-89. http://geodesic.mathdoc.fr/item/PFMT_2021_2_a12/

[1] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin, 1994 | MR | Zbl

[2] A.N. Skiba, “O $\sigma$-svoistvakh konechnykh grupp I”, Problemy fiziki, matematiki i tekhniki, 2014, no. 4 (21), 89–96

[3] A.N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[4] A.N. Skiba, “Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups”, J. Algebra, 495 (2018), 114–129 | DOI | MR | Zbl

[5] A.N. Skiba, “On sublattices of the subgroup lattice defined by formation Fitting sets”, J. Algebra, 550 (2020), 69–85 | DOI | MR | Zbl

[6] A.N. Skiba, “A generalization of a Hall theorem”, J. Algebra Appl., 15:4 (2015), 21–36 | MR

[7] A.N. Skiba, “On Some Results in the Theory of Finite Partially Soluble Groups”, Commun. Math. Stat., 4 (2016), 281–309 | DOI | MR | Zbl

[8] J. Huang, B. Hu, A.N. Skiba, “On weakly $\sigma$-quasinormal subgroups of finite groups”, Publ. Math. Debrecen, 92:1–2 (2018), 201–216 | MR | Zbl

[9] I. Zimmermann, “Submodular subgroups in finite groups”, Math. Z., 202 (1989), 545–557 | DOI | MR | Zbl

[10] A.E. Spencer, “Maximal nonnormal chains in finite groups”, Pacific J. Math., 27 (1968), 167–173 | DOI | MR | Zbl

[11] R. Schmid, “Endliche Gruppen mit vilen modularen Untergruppen”, Abhan. Math. Sem. Univ. Hamburg., 34 (1970), 115–125 | DOI | MR

[12] Y. Wang, “$c$-normality of groups and its properties”, J. Algebra, 180 (1996), 954–965 | DOI | MR | Zbl

[13] L.A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978

[14] B. Huppert, Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[15] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR