Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2021_2_a12, author = {V. M. Sel'kin and I. V. Blisnets and V. S. Zakrevskaya}, title = {A $\sigma$-solubility criterion of a finite group}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {84--89}, publisher = {mathdoc}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2021_2_a12/} }
TY - JOUR AU - V. M. Sel'kin AU - I. V. Blisnets AU - V. S. Zakrevskaya TI - A $\sigma$-solubility criterion of a finite group JO - Problemy fiziki, matematiki i tehniki PY - 2021 SP - 84 EP - 89 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2021_2_a12/ LA - ru ID - PFMT_2021_2_a12 ER -
V. M. Sel'kin; I. V. Blisnets; V. S. Zakrevskaya. A $\sigma$-solubility criterion of a finite group. Problemy fiziki, matematiki i tehniki, no. 2 (2021), pp. 84-89. http://geodesic.mathdoc.fr/item/PFMT_2021_2_a12/
[1] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin, 1994 | MR | Zbl
[2] A.N. Skiba, “O $\sigma$-svoistvakh konechnykh grupp I”, Problemy fiziki, matematiki i tekhniki, 2014, no. 4 (21), 89–96
[3] A.N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl
[4] A.N. Skiba, “Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups”, J. Algebra, 495 (2018), 114–129 | DOI | MR | Zbl
[5] A.N. Skiba, “On sublattices of the subgroup lattice defined by formation Fitting sets”, J. Algebra, 550 (2020), 69–85 | DOI | MR | Zbl
[6] A.N. Skiba, “A generalization of a Hall theorem”, J. Algebra Appl., 15:4 (2015), 21–36 | MR
[7] A.N. Skiba, “On Some Results in the Theory of Finite Partially Soluble Groups”, Commun. Math. Stat., 4 (2016), 281–309 | DOI | MR | Zbl
[8] J. Huang, B. Hu, A.N. Skiba, “On weakly $\sigma$-quasinormal subgroups of finite groups”, Publ. Math. Debrecen, 92:1–2 (2018), 201–216 | MR | Zbl
[9] I. Zimmermann, “Submodular subgroups in finite groups”, Math. Z., 202 (1989), 545–557 | DOI | MR | Zbl
[10] A.E. Spencer, “Maximal nonnormal chains in finite groups”, Pacific J. Math., 27 (1968), 167–173 | DOI | MR | Zbl
[11] R. Schmid, “Endliche Gruppen mit vilen modularen Untergruppen”, Abhan. Math. Sem. Univ. Hamburg., 34 (1970), 115–125 | DOI | MR
[12] Y. Wang, “$c$-normality of groups and its properties”, J. Algebra, 180 (1996), 954–965 | DOI | MR | Zbl
[13] L.A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978
[14] B. Huppert, Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl
[15] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR