Trigonometric Pad\'e approximants of special functions
Problemy fiziki, matematiki i tehniki, no. 2 (2021), pp. 81-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the functions $H_\gamma=\sum_{k=1}^\infty\sin kx/(\gamma)_k$, where $(\gamma)_k=\gamma(\gamma+1)\cdots(\gamma+k-1)$ and their trigonometric Padé approximations $\pi^t_{n,m}(x;H_\gamma)$ the asymptotics of decreasing difference $H_\gamma(x)-\pi^t_{n,m}(x;H_\gamma)$ in the case is found, where $0\leqslant m\leqslant m(n)$, $m(n)=o(n)$, as $n\to\infty$. Particulary, we determine that, under the same assumption, the trigonometric Padé approximations $\pi^t_{n,m}(x;H_\gamma)$ converge to $H_\gamma$ uniformly on the $\mathbb{R}$ with the asymptotically best rate.
Keywords: Padé approximations, asymptotic equality, best uniform approximation, trigonometric Padé approximations, rational approximations.
@article{PFMT_2021_2_a11,
     author = {N. V. Ryabchenko},
     title = {Trigonometric {Pad\'e} approximants of special functions},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {81--83},
     publisher = {mathdoc},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_2_a11/}
}
TY  - JOUR
AU  - N. V. Ryabchenko
TI  - Trigonometric Pad\'e approximants of special functions
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 81
EP  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_2_a11/
LA  - ru
ID  - PFMT_2021_2_a11
ER  - 
%0 Journal Article
%A N. V. Ryabchenko
%T Trigonometric Pad\'e approximants of special functions
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 81-83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_2_a11/
%G ru
%F PFMT_2021_2_a11
N. V. Ryabchenko. Trigonometric Pad\'e approximants of special functions. Problemy fiziki, matematiki i tehniki, no. 2 (2021), pp. 81-83. http://geodesic.mathdoc.fr/item/PFMT_2021_2_a11/

[1] Yu.A. Labych, A.P. Starovoitov, “Trigonometricheskie approksimatsii Pade funktsii s regulyarno ubyvayuschimi koeffitsientami Fure”, Matematicheskii sbornik, 200:7 (2009), 107–130 | Zbl

[2] Yu.A. Labych, “O ratsionalnoi approksimatsii periodicheskoi funktsii”, Vestnik polotskogo gosudarstvennogo universiteta. Seriya S. Fundamentalnye nauki, 2003, no. 3, 77–86

[3] A.P. Starovoitov, N.A. Starovoitova, “Approksimatsii Pade funktsii Mittag-Lefflera”, Matematicheskii sbornik, 198:7 (2007), 109–122 | Zbl

[4] Dzh. Beiker ml., P. Greivs-Morris, Approksimatsii Pade. 1. Osnovy teorii. 2. Obobscheniya i prilozheniya, Mir, M., 1986, 502 pp.

[5] G.G. Lorentz, M. v. Golitschek, Y. Makovoz, Constructive Approximation, Advanced problems, Springer-Verlag, New York–Berlin–Heidelberg, 1996, 651 pp. | MR | Zbl