Calculation of the section of the $2\to 4$ cascade reaction by the basis spinor method
Problemy fiziki, matematiki i tehniki, no. 2 (2021), pp. 7-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

A general technique for calculating cascade processes in the framework of narrow resonances' improved approximation is considered. Possible experimental restrictions on the emission angles of final and intermediate particles were taken into account. An important distinguishing feature of the technique is the usage of the Poincaré-invariant helicities for the final particles of the cascade reaction, as well as the method of basis spinors. As a result, the section of the cascade process $ab\to cd\to 12+34$ has a compact form.
Keywords: binary reaction, Feynman diagram, cross section, helicity, partial width, decay.
@article{PFMT_2021_2_a0,
     author = {V. V. Andreev},
     title = {Calculation of the section of the $2\to 4$ cascade reaction by the basis spinor method},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {7--13},
     publisher = {mathdoc},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_2_a0/}
}
TY  - JOUR
AU  - V. V. Andreev
TI  - Calculation of the section of the $2\to 4$ cascade reaction by the basis spinor method
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 7
EP  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_2_a0/
LA  - ru
ID  - PFMT_2021_2_a0
ER  - 
%0 Journal Article
%A V. V. Andreev
%T Calculation of the section of the $2\to 4$ cascade reaction by the basis spinor method
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 7-13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_2_a0/
%G ru
%F PFMT_2021_2_a0
V. V. Andreev. Calculation of the section of the $2\to 4$ cascade reaction by the basis spinor method. Problemy fiziki, matematiki i tehniki, no. 2 (2021), pp. 7-13. http://geodesic.mathdoc.fr/item/PFMT_2021_2_a0/

[1] S. Dittmaier, S. Kallweit, P. Uwer, “NLO QCD corrections to $\mathrm{pp}/\mathrm{p\overline{p}}\to \mathrm{WW}+jet+\mathrm{X}$ jet including leptonic $\mathrm{W}$-boson decays”, Nucl. Phys., B826 (2010), 18–70 | DOI | Zbl

[2] Yu. Verle, Relyativistskaya teoriya reaktsii, Atomizdat, M., 1969, 442 pp.

[3] Yu.V. Novozhilov, Vvedenie v teoriyu elementarnykh chastits, Nauka, M., 1972, 472 pp.

[4] Kh. Pilkun, Fizika relyativistskikh chastits, Mir, M., 1983, 542 pp.

[5] E. Byukling, K. Kayanti, Kinematika elementarnykh chastits, Mir, M., 1975, 344 pp.

[6] I.S. Gradshtein, I.M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, 4-e per. izd., Gos. izd-vo fiz.-mat. literatury, M., 1963, 1110 pp.

[7] V.V. Andreev, “Analytic Calculation of Feynman Amplitudes”, Physics of Atomic Nuclei, 66:2 (2003), 383–393 | DOI

[8] V.V. Andreev, “Scattering QCD amplitudes with massive fermions using recursive relations”, Nonlinear phenomena in complex systems, 12:4 (2009), 338–342 | Zbl

[9] V.V. Andreev, “Vychislenie feinmanovskikh diagramm tekhnikoi blokov”, Problemy fiziki, matematiki i tekhniki, 2014, no. 2 (19), 7–12