Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2021_1_a8, author = {E. V. Kuzmina}, title = {Generalized solutions of the differential first-order equation with the special rational coefficient}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {54--61}, publisher = {mathdoc}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2021_1_a8/} }
TY - JOUR AU - E. V. Kuzmina TI - Generalized solutions of the differential first-order equation with the special rational coefficient JO - Problemy fiziki, matematiki i tehniki PY - 2021 SP - 54 EP - 61 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2021_1_a8/ LA - ru ID - PFMT_2021_1_a8 ER -
E. V. Kuzmina. Generalized solutions of the differential first-order equation with the special rational coefficient. Problemy fiziki, matematiki i tehniki, no. 1 (2021), pp. 54-61. http://geodesic.mathdoc.fr/item/PFMT_2021_1_a8/
[1] S. Albeverio, F. Gestezi, R. Kheeg-Kron, Kh. Kholden, Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991, 568 pp.
[2] S.T. Zavalischin, A.N. Sesekin, Impulsnye protsessy. Modeli i prilozheniya, Nauka, M., 1991, 256 pp.
[3] N.V. Lazakovich, O.L. Yablonskii, A.K. Khmyzov, “Zadacha Koshi dlya sistem differentsialnykh uravnenii s obobschennymi koeffitsientami v pryamom proizvedenii algebr mnemofunktsii”, Doklady Natsionalnoi akademii nauk Belarusi, 55:2 (2011), 5–9
[4] A.B. Antonevich, T.G. Shagova, “Obobschennye resheniya odnogo differentsialnogo uravneniya s ratsionalnym koeffitsientom”, Tavricheskii Vestnik Informatiki i Matematiki, 2019, no. 3, 23–36
[5] V.S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979, 320 pp.
[6] T.G. Shagova, “Ratsionalnye mnemofunktsii na R”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2019, no. 2, 6–17
[7] G. Bremerman, Raspredeleniya, kompleksnye peremennye i preobrazovaniya Fure, Mir, M., 1968, 276 pp.
[8] A.B. Antonevich, E.B. Kuzmina, “Resheniya differentsialnogo uravneniya $u'+\frac sxu=0$ v prostranstve raspredelenii”, Vesn. Grodz. dzyarzh. un-ta imya Ya. Kupaly. Ser. 2, Matematyka. Fizika. Infarmatyka, vylichalnaya tekhnika i kiravanne, 10:2 (2020), 56–66