Generalized solutions of the differential first-order equation with the special rational coefficient
Problemy fiziki, matematiki i tehniki, no. 1 (2021), pp. 54-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

Solutions in the space of generalized functions of a linear first-order differential equation in which the coefficient is the generalized function generated by the rational function $\frac{2x-a}{x^2-ax}$, $a>0$ are considered. Conditions for the existence of a generalized solution to the Cauchy problem are found. It is shown that the generalized solution does not exist for all considered coefficients.
Keywords: generalized functions, differential equation with generalized coefficient, analytical representation.
@article{PFMT_2021_1_a8,
     author = {E. V. Kuzmina},
     title = {Generalized solutions of the differential first-order equation with the special rational coefficient},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {54--61},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_1_a8/}
}
TY  - JOUR
AU  - E. V. Kuzmina
TI  - Generalized solutions of the differential first-order equation with the special rational coefficient
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 54
EP  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_1_a8/
LA  - ru
ID  - PFMT_2021_1_a8
ER  - 
%0 Journal Article
%A E. V. Kuzmina
%T Generalized solutions of the differential first-order equation with the special rational coefficient
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 54-61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_1_a8/
%G ru
%F PFMT_2021_1_a8
E. V. Kuzmina. Generalized solutions of the differential first-order equation with the special rational coefficient. Problemy fiziki, matematiki i tehniki, no. 1 (2021), pp. 54-61. http://geodesic.mathdoc.fr/item/PFMT_2021_1_a8/

[1] S. Albeverio, F. Gestezi, R. Kheeg-Kron, Kh. Kholden, Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991, 568 pp.

[2] S.T. Zavalischin, A.N. Sesekin, Impulsnye protsessy. Modeli i prilozheniya, Nauka, M., 1991, 256 pp.

[3] N.V. Lazakovich, O.L. Yablonskii, A.K. Khmyzov, “Zadacha Koshi dlya sistem differentsialnykh uravnenii s obobschennymi koeffitsientami v pryamom proizvedenii algebr mnemofunktsii”, Doklady Natsionalnoi akademii nauk Belarusi, 55:2 (2011), 5–9

[4] A.B. Antonevich, T.G. Shagova, “Obobschennye resheniya odnogo differentsialnogo uravneniya s ratsionalnym koeffitsientom”, Tavricheskii Vestnik Informatiki i Matematiki, 2019, no. 3, 23–36

[5] V.S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979, 320 pp.

[6] T.G. Shagova, “Ratsionalnye mnemofunktsii na R”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2019, no. 2, 6–17

[7] G. Bremerman, Raspredeleniya, kompleksnye peremennye i preobrazovaniya Fure, Mir, M., 1968, 276 pp.

[8] A.B. Antonevich, E.B. Kuzmina, “Resheniya differentsialnogo uravneniya $u'+\frac sxu=0$ v prostranstve raspredelenii”, Vesn. Grodz. dzyarzh. un-ta imya Ya. Kupaly. Ser. 2, Matematyka. Fizika. Infarmatyka, vylichalnaya tekhnika i kiravanne, 10:2 (2020), 56–66