The mechanism of bismuth films growth at initial stages of electrochemical deposition
Problemy fiziki, matematiki i tehniki, no. 1 (2021), pp. 31-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

The processes of Bi films electrodeposition from perchlorate electrolyte at the initial stages have been investigated. For the first time it has been shown and explained why, with deposition duration of 1 s, the co-deposition of Pb and Bi occurs. The correlation between the synthesis conditions and the chemical composition and microstructure of Bi films is discussed. Analysis of microstructural features revealed a change in the growth mechanism of Bi films from a columnar to a layered-granular form with an increase in the electrodeposition duration. This anomalous behavior is explained by the appearance of a strong Bi texture and the effects of grain coalescence during growth. Porosity studies have shown that Bi films have a closely-packed microstructure.
Keywords: bismuth, lead, electrodeposition, perchlorate electrolyte, microscopy.
@article{PFMT_2021_1_a4,
     author = {V. M. Fedosyuk},
     title = {The mechanism of bismuth films growth at initial stages of electrochemical deposition},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {31--37},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_1_a4/}
}
TY  - JOUR
AU  - V. M. Fedosyuk
TI  - The mechanism of bismuth films growth at initial stages of electrochemical deposition
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 31
EP  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_1_a4/
LA  - ru
ID  - PFMT_2021_1_a4
ER  - 
%0 Journal Article
%A V. M. Fedosyuk
%T The mechanism of bismuth films growth at initial stages of electrochemical deposition
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 31-37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_1_a4/
%G ru
%F PFMT_2021_1_a4
V. M. Fedosyuk. The mechanism of bismuth films growth at initial stages of electrochemical deposition. Problemy fiziki, matematiki i tehniki, no. 1 (2021), pp. 31-37. http://geodesic.mathdoc.fr/item/PFMT_2021_1_a4/

[1] J.P. Ziegler, “Status of reversible electrodeposition electrochromic devices”, Solar Energy Materials Solar Cells, 56 (1999), 477–493 | DOI

[2] S.I. Córdoba De Torresi et al., “Optical characterization of bismuth reversible electrodeposition”, J. Electroanalytical Chemistry, 414 (1996), 11–16 | DOI

[3] V. Rehacek et al., “Bismuth film voltammetric sensor on pyrolyzed photoresist/alumina support for determination of heavy metals”, Electroanalysis, 26 (2014), 898–903 | DOI

[4] P. Hofmann, “The surfaces of bismuth: Structural and electronic properties”, Prog. Surf. Sci., 81 (2006), 191–245 | DOI

[5] F. Yang et al., “Spatial and energy distribution of topological edge states in single Bi(111) bilayer”, Phys. Rev. Lett., 109 (2012), 1–5 | Zbl

[6] B. O'Brien et al., “Magnetotransport properties of electrodeposited bismuth films”, J. Phys. Chem. C, 112 (2008), 12018–12023 | DOI

[7] J. Moral-Vico et al., “Microstructure and electrical transport in electrodeposited Bi films”, J. Electroanal. Chem., 832 (2019), 40–47 | DOI

[8] L. Li et al., “A route to fabricate single crystalline bismuth nanowire arrays with different diameters”, Chem. Phys. Lett., 378 (2003), 244–249 | DOI

[9] F. Yang et al., “Large magnetoresistance of electrodeposited single-crystal bismuth thin films”, Science, 284 (1999), 1335–1337 | DOI

[10] N. Iyomoto et al., “Optimization of X-ray absorbers for TES microcalorimeters”, Proc. SPIE, 5501 (2004), 145–154 | DOI

[11] L.M. Gades et al., “Development of Thick Electroplated Bismuth Absorbers for Large Collection Area Hard X-ray Transition Edge Sensors”, IEEE Trans. Appl. Supercond., 27 (2017), 1–5 | DOI

[12] D.I. Tishkevich et al., “Effect of the Synthesis Conditions and Microstructure for Highly Effective Electron Shields Production Based on Bi Coatings”, ACS Appl. Energy Mater., 1 (2018), 1695–1702 | DOI

[13] C. Su et al., “Photoinduced switchable wettability of bismuth coating with hierarchical dendritic structure between superhydrophobicity and superhydrophilicity”, Appl. Surf. Sci., 353 (2015), 735–743 | DOI

[14] Y. Tsai et al., “Effects of polyethylene glycol and gelatin on the crystal size, morphology, and Sn$^{2+}$-sensing ability of bismuth deposits”, Electrochim. Acta, 56 (2011), 7615–7621 | DOI

[15] Z. Zhang et al., “Synthesis and electrochemical sensing toward heavy metals of bunch-like bismuth nanostructures”, Nanoscale Res. Lett., 5 (2010), 398–402 | DOI

[16] C. Su et al., “Photoinduced switchable wettability of bismuth coating with hierarchical dendritic structure between superhydrophobicity and superhydrophilicity”, Appl. Surf. Sci., 353 (2015), 735–743 | DOI

[17] J. Kim et al., “Bismuth nanowire thermoelectrics”, J. Mater. Chem. C, 3 (2015), 11999–12013 | DOI

[18] J.W. Roh et al., “Extreme reduction of thermal conductivity by embedding Al$_2$O$_3$ nanoparticles into singlecrystalline Bi nanowires”, Acta Mater., 136 (2017), 315–322 | DOI

[19] E. Sandnes et al., “Electrodeposition of bismuth from nitric acid electrolyte”, Electrochim. Acta, 52 (2007), 6221–6228 | DOI

[20] P.V. Vereecken et al., “Electrodeposition of bismuth thin films on n-GaAs (110)”, Appl. Phys. Lett., 86 (2005), 1–3 | DOI

[21] D. Bilican et al., “Electrochemical synthesis of bismuth particles: Tuning particle shape through substrate type within a narrow potential window”, Materials (Basel), 10 (2017), 1–10 | DOI

[22] S.L. Tay et al., “Microstructures and properties of electrodeposited Cu-Bi composite coatings”, Int. J. Electrochem. Sci., 9 (2014), 2266–2277

[23] H. Wada et al., “Bi-Cu film deposition in aqueous solutions”, Trans. Nonferrous Met. Soc. China (English Ed.), 19 (2009), 791–794 | DOI

[24] M. Yang et al., “Electrodeposition of bismuth onto glassy carbon electrodes from nitrate solutions”, Electroanal. Chem., 583 (2005), 46–55 | DOI

[25] L. Zhou et al., “Nucleation and growth of bismuth electrodeposition from alkaline electrolyte”, Bull. Korean Chem. Soc., 33 (2012), 1541–1546 | DOI

[26] M. Harbaugh et al., “The Electrodeposition of Bismuth from Perchloric Acid Solutions”, Trans. Electrochem. Soc., 64 (1933), 293 | DOI

[27] T.I. Zubar et al., “Anomalies in Ni-Fe nanogranular films growth”, J. Alloys Compd., 748 (2018), 970–978 | DOI

[28] U.S. Geological Survey. Metals and Minerals: U.S. Geological Survey Minerals Yearbook, v. 1, U.S. Geological Survey, Reston, VA, USA, 2011, 1101 pp.

[29] S. Lotfian et al., “Effect of layer thickness on the high temperature mechanical properties of Al/SiC nanolaminates”, Thin Solid Films, 571 (2014), 260–267 | DOI

[30] D.I. Tishkevich et al., “Electrochemical deposition regimes and critical influence of organic additives on the structure of Bi films”, J. Alloys Compd., 735 (2018), 1943–1948 | DOI

[31] A.D. Brown et al., “Absorber materials for transition-edge sensor X-ray microcalorimeters”, J. Low Temp. Phys., 15 (2008), 413–417 | DOI

[32] Standartnyi elektrodnyi potentsial, (Data dostupa: 27.01.2021) https://ru.wikipedia.org/wiki/Standartnyi_elektrodnyi_potentsial