Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2021_1_a4, author = {V. M. Fedosyuk}, title = {The mechanism of bismuth films growth at initial stages of electrochemical deposition}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {31--37}, publisher = {mathdoc}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2021_1_a4/} }
V. M. Fedosyuk. The mechanism of bismuth films growth at initial stages of electrochemical deposition. Problemy fiziki, matematiki i tehniki, no. 1 (2021), pp. 31-37. http://geodesic.mathdoc.fr/item/PFMT_2021_1_a4/
[1] J.P. Ziegler, “Status of reversible electrodeposition electrochromic devices”, Solar Energy Materials Solar Cells, 56 (1999), 477–493 | DOI
[2] S.I. Córdoba De Torresi et al., “Optical characterization of bismuth reversible electrodeposition”, J. Electroanalytical Chemistry, 414 (1996), 11–16 | DOI
[3] V. Rehacek et al., “Bismuth film voltammetric sensor on pyrolyzed photoresist/alumina support for determination of heavy metals”, Electroanalysis, 26 (2014), 898–903 | DOI
[4] P. Hofmann, “The surfaces of bismuth: Structural and electronic properties”, Prog. Surf. Sci., 81 (2006), 191–245 | DOI
[5] F. Yang et al., “Spatial and energy distribution of topological edge states in single Bi(111) bilayer”, Phys. Rev. Lett., 109 (2012), 1–5 | Zbl
[6] B. O'Brien et al., “Magnetotransport properties of electrodeposited bismuth films”, J. Phys. Chem. C, 112 (2008), 12018–12023 | DOI
[7] J. Moral-Vico et al., “Microstructure and electrical transport in electrodeposited Bi films”, J. Electroanal. Chem., 832 (2019), 40–47 | DOI
[8] L. Li et al., “A route to fabricate single crystalline bismuth nanowire arrays with different diameters”, Chem. Phys. Lett., 378 (2003), 244–249 | DOI
[9] F. Yang et al., “Large magnetoresistance of electrodeposited single-crystal bismuth thin films”, Science, 284 (1999), 1335–1337 | DOI
[10] N. Iyomoto et al., “Optimization of X-ray absorbers for TES microcalorimeters”, Proc. SPIE, 5501 (2004), 145–154 | DOI
[11] L.M. Gades et al., “Development of Thick Electroplated Bismuth Absorbers for Large Collection Area Hard X-ray Transition Edge Sensors”, IEEE Trans. Appl. Supercond., 27 (2017), 1–5 | DOI
[12] D.I. Tishkevich et al., “Effect of the Synthesis Conditions and Microstructure for Highly Effective Electron Shields Production Based on Bi Coatings”, ACS Appl. Energy Mater., 1 (2018), 1695–1702 | DOI
[13] C. Su et al., “Photoinduced switchable wettability of bismuth coating with hierarchical dendritic structure between superhydrophobicity and superhydrophilicity”, Appl. Surf. Sci., 353 (2015), 735–743 | DOI
[14] Y. Tsai et al., “Effects of polyethylene glycol and gelatin on the crystal size, morphology, and Sn$^{2+}$-sensing ability of bismuth deposits”, Electrochim. Acta, 56 (2011), 7615–7621 | DOI
[15] Z. Zhang et al., “Synthesis and electrochemical sensing toward heavy metals of bunch-like bismuth nanostructures”, Nanoscale Res. Lett., 5 (2010), 398–402 | DOI
[16] C. Su et al., “Photoinduced switchable wettability of bismuth coating with hierarchical dendritic structure between superhydrophobicity and superhydrophilicity”, Appl. Surf. Sci., 353 (2015), 735–743 | DOI
[17] J. Kim et al., “Bismuth nanowire thermoelectrics”, J. Mater. Chem. C, 3 (2015), 11999–12013 | DOI
[18] J.W. Roh et al., “Extreme reduction of thermal conductivity by embedding Al$_2$O$_3$ nanoparticles into singlecrystalline Bi nanowires”, Acta Mater., 136 (2017), 315–322 | DOI
[19] E. Sandnes et al., “Electrodeposition of bismuth from nitric acid electrolyte”, Electrochim. Acta, 52 (2007), 6221–6228 | DOI
[20] P.V. Vereecken et al., “Electrodeposition of bismuth thin films on n-GaAs (110)”, Appl. Phys. Lett., 86 (2005), 1–3 | DOI
[21] D. Bilican et al., “Electrochemical synthesis of bismuth particles: Tuning particle shape through substrate type within a narrow potential window”, Materials (Basel), 10 (2017), 1–10 | DOI
[22] S.L. Tay et al., “Microstructures and properties of electrodeposited Cu-Bi composite coatings”, Int. J. Electrochem. Sci., 9 (2014), 2266–2277
[23] H. Wada et al., “Bi-Cu film deposition in aqueous solutions”, Trans. Nonferrous Met. Soc. China (English Ed.), 19 (2009), 791–794 | DOI
[24] M. Yang et al., “Electrodeposition of bismuth onto glassy carbon electrodes from nitrate solutions”, Electroanal. Chem., 583 (2005), 46–55 | DOI
[25] L. Zhou et al., “Nucleation and growth of bismuth electrodeposition from alkaline electrolyte”, Bull. Korean Chem. Soc., 33 (2012), 1541–1546 | DOI
[26] M. Harbaugh et al., “The Electrodeposition of Bismuth from Perchloric Acid Solutions”, Trans. Electrochem. Soc., 64 (1933), 293 | DOI
[27] T.I. Zubar et al., “Anomalies in Ni-Fe nanogranular films growth”, J. Alloys Compd., 748 (2018), 970–978 | DOI
[28] U.S. Geological Survey. Metals and Minerals: U.S. Geological Survey Minerals Yearbook, v. 1, U.S. Geological Survey, Reston, VA, USA, 2011, 1101 pp.
[29] S. Lotfian et al., “Effect of layer thickness on the high temperature mechanical properties of Al/SiC nanolaminates”, Thin Solid Films, 571 (2014), 260–267 | DOI
[30] D.I. Tishkevich et al., “Electrochemical deposition regimes and critical influence of organic additives on the structure of Bi films”, J. Alloys Compd., 735 (2018), 1943–1948 | DOI
[31] A.D. Brown et al., “Absorber materials for transition-edge sensor X-ray microcalorimeters”, J. Low Temp. Phys., 15 (2008), 413–417 | DOI
[32] Standartnyi elektrodnyi potentsial, (Data dostupa: 27.01.2021) https://ru.wikipedia.org/wiki/Standartnyi_elektrodnyi_potentsial