Structure and properties of a-C films containing metals and products of their interaction with nitrogen, carbon
Problemy fiziki, matematiki i tehniki, no. 1 (2021), pp. 24-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

(Cu-CrN):a-C and (Al-CrN):a-C coatings were deposited using vacuum-plasma methods, their chemical and phase composition, mechanical properties were determined. The features of the formation of nitride and carbide compounds with the content of chromium, copper or aluminum in the coating have been established by the XPS method. It was shown that the concentration of nitrogen-containing bonds and the content of the carbide phase in the (Al-CrN):a-C coating significantly exceed their content in the (Cu-CrN):a-C coating. The tribotechnical properties of coatings during friction against steel ШХ15, Al$_2$O$_3$ and Si$_3$N$_4$ have been determined. It is shown that a lower value of the friction coefficient is recorded during contact interaction (Al-CrN):a-C with steel ШХ15 (0.2), and the minimum coefficient of volumetric wear of the counterbody was obtained in the pair of friction with Al$_2$O$_3$ (1.08$\times$10$^{-10}$ m$^3$/(N$\cdot$m)). It was shown by the indentation method that the introduction of copper increases the ductility of the coatings, while their hardness decreases slightly. (Al-CrN):a-C coatings are characterized by a higher hardness (14.2 GPa) and the coefficient of elastic recovery $\eta_{IT}$ is 51.8 % at an indentation depth of 500 nm.
Keywords: composite carbon coatings, tribotechnical properties, mechanical properties.
Mots-clés : metal carbides and nitrides
@article{PFMT_2021_1_a3,
     author = {E. A. Kulesh and A. V. Rogachev and D. G. Piliptsou and Xiaohong Jiang and A. S. Rudenkov},
     title = {Structure and properties of {a-C} films containing metals and products of their interaction with nitrogen, carbon},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {24--30},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_1_a3/}
}
TY  - JOUR
AU  - E. A. Kulesh
AU  - A. V. Rogachev
AU  - D. G. Piliptsou
AU  - Xiaohong Jiang
AU  - A. S. Rudenkov
TI  - Structure and properties of a-C films containing metals and products of their interaction with nitrogen, carbon
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 24
EP  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_1_a3/
LA  - ru
ID  - PFMT_2021_1_a3
ER  - 
%0 Journal Article
%A E. A. Kulesh
%A A. V. Rogachev
%A D. G. Piliptsou
%A Xiaohong Jiang
%A A. S. Rudenkov
%T Structure and properties of a-C films containing metals and products of their interaction with nitrogen, carbon
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 24-30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_1_a3/
%G ru
%F PFMT_2021_1_a3
E. A. Kulesh; A. V. Rogachev; D. G. Piliptsou; Xiaohong Jiang; A. S. Rudenkov. Structure and properties of a-C films containing metals and products of their interaction with nitrogen, carbon. Problemy fiziki, matematiki i tehniki, no. 1 (2021), pp. 24-30. http://geodesic.mathdoc.fr/item/PFMT_2021_1_a3/

[1] A.V. Rogachev, “Tribotekhnicheskie svoistva kompozitsionnykh pokrytii, osazhdaemykh vakuumno-plazmennymi metodami”, Trenie i iznos, 29:3 (2008), 285–592

[2] A.V. Rogachev i dr., “Osnovnye tekhnologicheskie metody povysheniya tribotekhnicheskikh svoistv kompozitsionnykh pokrytii na osnove ugleroda”, Materialy MNTK «Aktualnye problemy fiziki tverdogo tela», v. 3, Minsk, 2007, 377–380

[3] D.G. Piliptsov i dr., Kompozitsionnye uglerodnye pokrytiya, osazhdennye iz impulsnoi katodnoi plazmy, Radiotekhnika, M., 2020, 283 pp.

[4] V.M. Matsevityi, Pokrytiya dlya rezhuschikh instrumentov, monografiya, Vischa shkola, Kharkov, 1987, 128 pp.

[5] J. Musil, “Hard and superhard nanocomposite coatings”, Surface and Coatings Technology, 125 (2000), 322–330 | DOI

[6] M. Stueber et al., “Multifunctional nanolaminated PVD coatings in the system Ti-Al-N-C by combination of metastable fcc phases and nanocomposite microstructures”, Surface and Coatings Technology, 200 (2006), 6162–6171 | DOI

[7] H.J. Choe, S.-H. Kwon, J.-J. Lee, “Tribological properties and thermal stability of TiAlCN coatings deposited by ICP-assisted sputtering”, Surface and Coatings Technology, 228 (2013), 282–285 | DOI

[8] E.A. Kulesh i dr., “Struktura i mekhanicheskie svoistva kompozitsionnykh titan-uglerodnykh pokrytii, formiruemykh kombinirovannym metodom”, Problemy fiziki, matematiki i tekhniki, 2020, no. 3 (44), 35–43

[9] D.G. Piliptsov, A.V. Rogachev, N.N. Fedosenko, “Morfologiya i mekhanicheskie svoistva nanokompozitsionnykh med-uglerodnykh pokrytii, osazhdennykh v impulsnoi plazme”, Nanomaterialy i nanostruktury, 2:2 (2011), 37–42

[10] B.D. Beake et al., “Micro-impact testing of AlTiN and TiAlCrN coatings”, Wear, 418 (2019), 102–110 | DOI

[11] A. Gilewicz et al., “Structure, morphology, and mechanical properties of AlCrN coatings deposited by cathodic arc evaporation”, J. of Mat. Eng. and Performance, 28 (2019), 1522–1531 | DOI

[12] W. Zhao, S. Zhu, D. Kong, “Friction-Wear Characterization of cathodic arc ion plated CrC coating under different lubrication conditions”, Journal of Superhard Materials, 41 (2019), 402–411 | DOI

[13] A. Amanov, I.-S. Cho, S. Sasaki, “The influence of DLC coating on the mechanical and frictional properties of unpeened and peened Cu-based bimetal under dry sliding conditions”, Materials Chemistry and Physics, 143:2 (2014), 814–824 | DOI

[14] X. Wang et al., “Investigation on the structure and properties of Al$_x$Cr$_{1-x}$N coatings deposited by reactive magnetron co-sputtering”, Journal of Alloys and Compounds, 502 (2010), 243–249 | DOI

[15] H.C. Barshilia et al., “Structure, hardness and thermal stability of TiAlN and nanolayered TiAlN/CrN multilayer films”, Vacuum, 77 (2005), 169–179 | DOI

[16] Z. Bing et al., “A comparison study between atomic and ionic nitrogen doped carbon films prepared by ion beam assisted cathode arc deposition at various pulse frequencies”, Applied Surface Science, 287 (2013), 150–158 | DOI

[17] B.R. Lawn, V.R. Howes, “Elastic recovery at hardness indentations”, J. of Materials Science, 16 (1981), 147–151

[18] N. Dwivedi et al., “Nanoindentation measurements on modified diamond-like carbon thin films”, Applied Surface Science, 257 (2011), 9953–9959 | DOI

[19] A. Leyland, A. Matthews, “On the significance of the $H / E$ ratio in wear control: a nanocomposite coating approach to optimized tribological behavior”, Wear, 246 (2000), 1–11 | DOI