Rational approximation of the Mittag-Leffler functions
Problemy fiziki, matematiki i tehniki, no. 1 (2021), pp. 65-68

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that for $m-1\le n$ the Padé approximants $\{\pi_{n,m}(\cdot;F_\gamma)\}$, which locally deliver the best rational approximations to the Mittag-Leffler functions $F_\gamma$, approximate the $F_\gamma$ as $n\to\infty$ uniformly on the compact set $D=\{z:|z|\le1\}$ at a rate asymptotically equal to the best possible one. In particular, analogues of the well-know results of Braess and Trefethen relating to the approximation of $\exp(z)$ are proved for the Mittag-Leffler functions.
Keywords: Padé approximations, asymptotic equality, Mittag–Leffler functions, rational approximations.
@article{PFMT_2021_1_a10,
     author = {N. V. Ryabchenko and A. P. Starovoitov},
     title = {Rational approximation of the {Mittag-Leffler} functions},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {65--68},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_1_a10/}
}
TY  - JOUR
AU  - N. V. Ryabchenko
AU  - A. P. Starovoitov
TI  - Rational approximation of the Mittag-Leffler functions
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 65
EP  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_1_a10/
LA  - ru
ID  - PFMT_2021_1_a10
ER  - 
%0 Journal Article
%A N. V. Ryabchenko
%A A. P. Starovoitov
%T Rational approximation of the Mittag-Leffler functions
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 65-68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_1_a10/
%G ru
%F PFMT_2021_1_a10
N. V. Ryabchenko; A. P. Starovoitov. Rational approximation of the Mittag-Leffler functions. Problemy fiziki, matematiki i tehniki, no. 1 (2021), pp. 65-68. http://geodesic.mathdoc.fr/item/PFMT_2021_1_a10/