Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2020_4_a3, author = {S. V. Korotkevich and V. V. Sviridova}, title = {Analysis of deformation processes in surface nickel layer}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {25--31}, publisher = {mathdoc}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2020_4_a3/} }
S. V. Korotkevich; V. V. Sviridova. Analysis of deformation processes in surface nickel layer. Problemy fiziki, matematiki i tehniki, no. 4 (2020), pp. 25-31. http://geodesic.mathdoc.fr/item/PFMT_2020_4_a3/
[1] B. Moser, T. Hanlon, K.S. Kumar, “Cyclic strain hardening of nanocryslline nickel”, Scri. Mater., 54:6 (2006), 1151–1155 | DOI
[2] V.E. Panin i dr., Poverkhnostnye sloi i vnutrennie granitsy razdela v geterogennykh materialakh, SO RAN, Novosibirsk, 2006, 520 pp.
[3] V.E. Panin, V.G. Pinchuk, S.V. Korotkevich, S.V. Panin, “Multiscaling of Lattice Curvature on Friction Surfaces of Metallic Materials as a Basic of Their Wear Mechanism”, Physical Mesomechanics, 20:1 (2017), 69–77 | DOI
[4] V.E. Panin, V.E. Egorushkin, A.V. Panin, “Fizicheskaya mezomekhanika deformiruemogo tverdogo tela kak mnogourovnevoi sistemy. I. Fizicheskie osnovy mnogourovnevogo podkhoda”, Fizicheskaya mezomekhanika, 9:3 (2006), 9–22
[5] V.G. Pinchuk, S.V. Korotkevich, Kinetika uprochneniya i razrusheniya poverkhnosti metallov pri trenii, LAP Lambert Academic Publishing, Saarbrücken, 2014, 180 pp.
[6] S.V. Korotkevich, V.G. Pinchuk, V.V. Kravchenko, Diagnostika opor kacheniya i skolzheniya po sostoyaniyu poverkhnosti razdela sopryazhennykh tel fizicheskimi metodami, LAP Lambert Academic Publishing, Saarbrücken, 2016, 266 pp.
[7] V.G. Pinchuk, S.V. Korotkevich, “Physical patterns of dislocation structure kinetics in friction loaded surface layers”, Global Journal For Research Analysis, 4:5 (2015), 255–257
[8] V. G. Pinchuk, I. A. Buyanovskiy, S. V. Korotkevich, “Kinetics of Microstructure and Selective Mechanism of Fracture of Metal Surface Layer under Friction”, Inorganic Materials: Applied Research, 6:5 (2015), 355–359 | DOI
[9] V.G. Pinchuk, S.V. Korotkevich, “Microstructure evolution in friction-loaded layers of nickel”, Indian Journal of Research, 4:2 (2015), 8–10
[10] V.G. Pinchuk, S.V. Korotkevich, E.A. Kovalev, “Relationship of Microstructural Criteria of Fracture and Evolution of Metal Surface and Physicochemical Properties of Medium at Friction”, Inorganic Materials: Applied Research, 8:4 (2017), 539–545 | DOI
[11] V.G. Pinchuk, S.V. Korotkevich, E.A. Kovalev, “Influence of the physical and chemical nature of quenching medium and friction regimes on the structure and kinetics of hardening and destruction of the surface layer of nickel”, Inorganic Materials: Applied Research, 9:4 (2018), 736–740 | DOI
[12] S.V. Korotkevich, V.V. Sviridova, “Strukturno-masshtabnye urovni deformatsii poverkhnostnogo sloya nikelya”, Problemy fiziki, matematiki i tekhniki, 2020, no. 2 (43), 17–22 | MR
[13] S.V. Korotkevich, “Hamilton's principle for to search of invariants at creation, evolution and destruction of nanomaterials”, International Journal of Engineering Research and Science, 4:6 (2018), 31–41
[14] V.E. Panin, “Fizicheskie osnovy mezomekhaniki sredy so strukturoi”, Izv. Vuzov. Fizika, 35:4 (1992), 5–18 | Zbl
[15] G. Nikolis, N. Prigozhin, Samoorganizatsiya v neravnovesnykh protsessakh, Mir, M., 1977, 512 pp.
[16] I. Intrater, E.S. Machlin, “Grain boundary and intercristalline cracking”, Acta Metall., 7:2 (1959), 140–142 | DOI
[17] P. Neuman, “Coarse slip model of fatigue”, Acta metallurgical, 17:9 (1969), 1219–1225 | DOI
[18] C. Holste, “Cyclic plasticity of nickel, from single crystals to submicrocrystalline polycrystals”, Philosophical Magazine, 84:3–5 (2004), 299–315 | DOI
[19] N.P. Suh, “An overview of the delaminatation theory of wear”, Wear, 44:1 (1977), 1–16 | DOI | MR