Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2020_4_a2, author = {S. S. Girgel}, title = {Solutions of the wave equation in parabolic rotary coordinates. {II.} {3D} {Tricomi--Kummer} light beams and other beams with the continuous angular index}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {20--24}, publisher = {mathdoc}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2020_4_a2/} }
TY - JOUR AU - S. S. Girgel TI - Solutions of the wave equation in parabolic rotary coordinates. II. 3D Tricomi--Kummer light beams and other beams with the continuous angular index JO - Problemy fiziki, matematiki i tehniki PY - 2020 SP - 20 EP - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2020_4_a2/ LA - ru ID - PFMT_2020_4_a2 ER -
%0 Journal Article %A S. S. Girgel %T Solutions of the wave equation in parabolic rotary coordinates. II. 3D Tricomi--Kummer light beams and other beams with the continuous angular index %J Problemy fiziki, matematiki i tehniki %D 2020 %P 20-24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2020_4_a2/ %G ru %F PFMT_2020_4_a2
S. S. Girgel. Solutions of the wave equation in parabolic rotary coordinates. II. 3D Tricomi--Kummer light beams and other beams with the continuous angular index. Problemy fiziki, matematiki i tehniki, no. 4 (2020), pp. 20-24. http://geodesic.mathdoc.fr/item/PFMT_2020_4_a2/
[1] S.S. Girgel, “Bezdifraktsionnye asimmetrichnye volnovye polya Besselya nepreryvnogo poryadka”, Problemy fiziki, matematiki i tekhniki, 2017, no. 1(30), 13–16
[2] S.S. Girgel, “Obobschennye puchki Besselya–Gaussa nepreryvnogo poryadka”, Problemy fiziki, matematiki i tekhniki, 2015, no. 4 (25), 11–15
[3] S.S. Girgel, “Obobschennye asimmetrichnye volnovye puchki Besselya–Gaussa nepreryvnogo poryadka”, Problemy fiziki, matematiki i tekhniki, 2017, no. 2(31), 10–14
[4] S.S. Girgel, “Tsirkulyarnye 3D svetovye puchki Kummera–Gaussa s nepreryvnym uglovym spektrom”, Problemy fiziki, matematiki i tekhniki, 2019, no. 1 (38), 4–7
[5] S.S. Girgel, “Puchki Kummera bez gaussovoi apodizatsii s perenosimoi konechnoi moschnostyu”, Problemy, fiziki, matematiki i tekhniki, 2015, no. 3 (24), 7–9
[6] S.S. Girgel, “Opticheskie puchki Vebera-Gaussa s nepreryvnym uglovym spektrom”, Problemy fiziki, matematiki i tekhniki, 2018, no. 4 (37), 1–5
[7] S.S. Girgel, “Resheniya volnovogo uravneniya v parabolicheskikh vraschatelnykh koordinatakh. I. 3D svetovye puchki Kummera-Kummera s nepreryvnym uglovym indeksom”, Problemy fiziki, matematiki i tekhniki, 2020, no. 3(44), 13–17 | MR
[8] A.A. Izmestev, “Odnoparametricheskie volnovye puchki v svobodnom prostranstve”, Izvestiya VUZov. Radiofizika, XIII:9 (1970), 1380–1388
[9] Dongmei Deng et al., “Three-dimensional nonparaxial beams in parabolic rotational coordinates”, Optics Letters, 38:19 (2013), 3934–3936 | DOI
[10] A.A. Kovalev, V.V. Kotlyar, “Lazernye puchki Khankelya–Besselya”, Kompyuternaya optika, 35:3 (2011), 297–304 | Zbl
[11] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, per. s angl., Nauka, M., 1979, 832 pp.
[12] Z. Flyugge, Zadachi po kvantovoi mekhanike, v. 2, Mir, M., 1974, 418 pp.
[13] E. Pinney, “Laguerre function in the mathematical foundations of the electromagnetic theory of the paraboloidal reflector”, Math. Fnd Physics, 25 (1946), 49–79 | DOI | MR | Zbl