Solutions of the wave equation in parabolic rotary coordinates. II. 3D Tricomi--Kummer light beams and other beams with the continuous angular index
Problemy fiziki, matematiki i tehniki, no. 4 (2020), pp. 20-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

Analytical expressions in the closed form for nonparaxial and paraxial 3D Tricomi–Kummer (Т–К) beams and other beams with continuous angular index m in parabolic rotary coordinates are offered and analyzed. Physical restrictions on possible values of free parameters of such beams are formulated. It is shown, that paraxial beams without Gaussian can transfer finite power.
Keywords: nonparaxial beams, paraxial beams, parabolic beams, Tricomi–Kummer beams.
@article{PFMT_2020_4_a2,
     author = {S. S. Girgel},
     title = {Solutions of the wave equation in parabolic rotary coordinates. {II.} {3D} {Tricomi--Kummer} light beams and other beams with the continuous angular index},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {20--24},
     publisher = {mathdoc},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2020_4_a2/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Solutions of the wave equation in parabolic rotary coordinates. II. 3D Tricomi--Kummer light beams and other beams with the continuous angular index
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2020
SP  - 20
EP  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2020_4_a2/
LA  - ru
ID  - PFMT_2020_4_a2
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Solutions of the wave equation in parabolic rotary coordinates. II. 3D Tricomi--Kummer light beams and other beams with the continuous angular index
%J Problemy fiziki, matematiki i tehniki
%D 2020
%P 20-24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2020_4_a2/
%G ru
%F PFMT_2020_4_a2
S. S. Girgel. Solutions of the wave equation in parabolic rotary coordinates. II. 3D Tricomi--Kummer light beams and other beams with the continuous angular index. Problemy fiziki, matematiki i tehniki, no. 4 (2020), pp. 20-24. http://geodesic.mathdoc.fr/item/PFMT_2020_4_a2/

[1] S.S. Girgel, “Bezdifraktsionnye asimmetrichnye volnovye polya Besselya nepreryvnogo poryadka”, Problemy fiziki, matematiki i tekhniki, 2017, no. 1(30), 13–16

[2] S.S. Girgel, “Obobschennye puchki Besselya–Gaussa nepreryvnogo poryadka”, Problemy fiziki, matematiki i tekhniki, 2015, no. 4 (25), 11–15

[3] S.S. Girgel, “Obobschennye asimmetrichnye volnovye puchki Besselya–Gaussa nepreryvnogo poryadka”, Problemy fiziki, matematiki i tekhniki, 2017, no. 2(31), 10–14

[4] S.S. Girgel, “Tsirkulyarnye 3D svetovye puchki Kummera–Gaussa s nepreryvnym uglovym spektrom”, Problemy fiziki, matematiki i tekhniki, 2019, no. 1 (38), 4–7

[5] S.S. Girgel, “Puchki Kummera bez gaussovoi apodizatsii s perenosimoi konechnoi moschnostyu”, Problemy, fiziki, matematiki i tekhniki, 2015, no. 3 (24), 7–9

[6] S.S. Girgel, “Opticheskie puchki Vebera-Gaussa s nepreryvnym uglovym spektrom”, Problemy fiziki, matematiki i tekhniki, 2018, no. 4 (37), 1–5

[7] S.S. Girgel, “Resheniya volnovogo uravneniya v parabolicheskikh vraschatelnykh koordinatakh. I. 3D svetovye puchki Kummera-Kummera s nepreryvnym uglovym indeksom”, Problemy fiziki, matematiki i tekhniki, 2020, no. 3(44), 13–17 | MR

[8] A.A. Izmestev, “Odnoparametricheskie volnovye puchki v svobodnom prostranstve”, Izvestiya VUZov. Radiofizika, XIII:9 (1970), 1380–1388

[9] Dongmei Deng et al., “Three-dimensional nonparaxial beams in parabolic rotational coordinates”, Optics Letters, 38:19 (2013), 3934–3936 | DOI

[10] A.A. Kovalev, V.V. Kotlyar, “Lazernye puchki Khankelya–Besselya”, Kompyuternaya optika, 35:3 (2011), 297–304 | Zbl

[11] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, per. s angl., Nauka, M., 1979, 832 pp.

[12] Z. Flyugge, Zadachi po kvantovoi mekhanike, v. 2, Mir, M., 1974, 418 pp.

[13] E. Pinney, “Laguerre function in the mathematical foundations of the electromagnetic theory of the paraboloidal reflector”, Math. Fnd Physics, 25 (1946), 49–79 | DOI | MR | Zbl