On the number of points on one class of curves in a ring of residues
Problemy fiziki, matematiki i tehniki, no. 4 (2020), pp. 98-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

The number of points on a curve $x^m\equiv y^k\pmod n$ is calculated. The concept of $m/k$-power residue (rational power residue) is introduced. Let n be a natural number. The number of rational power residues modulo n is calculated. As a corollary the classic result on the number of quadratic residues is obtained.
Keywords: algebraic curve, number of points on an algebraic curve, power residue, primitive root
Mots-clés : indices modulo $2^\alpha$.
@article{PFMT_2020_4_a17,
     author = {V. I. Murashka and A. A. Piachonkin},
     title = {On the number of points on one class of curves in a ring of residues},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {98--104},
     publisher = {mathdoc},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2020_4_a17/}
}
TY  - JOUR
AU  - V. I. Murashka
AU  - A. A. Piachonkin
TI  - On the number of points on one class of curves in a ring of residues
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2020
SP  - 98
EP  - 104
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2020_4_a17/
LA  - ru
ID  - PFMT_2020_4_a17
ER  - 
%0 Journal Article
%A V. I. Murashka
%A A. A. Piachonkin
%T On the number of points on one class of curves in a ring of residues
%J Problemy fiziki, matematiki i tehniki
%D 2020
%P 98-104
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2020_4_a17/
%G ru
%F PFMT_2020_4_a17
V. I. Murashka; A. A. Piachonkin. On the number of points on one class of curves in a ring of residues. Problemy fiziki, matematiki i tehniki, no. 4 (2020), pp. 98-104. http://geodesic.mathdoc.fr/item/PFMT_2020_4_a17/

[1] K.F. Gauss, Trudy po teorii chisel, obschaya redaktsiya akademika I. M. Vinogradova, kommentarii chlena-korr. AN SSSR B.N. Delone, Izd-vo AN SSSR, M., 1959, 297 pp.

[2] W. Stangl, “Counting squares in $\mathbb{Z}_n$”, Mathematics Magazine, 69:4 (1996), 285–289 | MR | Zbl

[3] S. Finch, P. Sebah, Squares and cubes modulo $n$, arXiv: (Date of access: 25.03.2016) 0604465v3 [math.NT]

[4] M.A. Korolev, “On the average number of power residues modulo a composite number”, Izvestiya: Mathematics, 74:6 (2010), 1225–1255 | DOI | MR

[5] D. Eichhorn, M. Khan, A. Stein, “Sums and differences of the coordinates of points on modular hyperbolas”, Combinatorial number theory, 2009, 17–38 | MR

[6] I.M. Vinogradov, Osnovy teorii chisel, Gostekhizdat, M.–L., 1952, 178 pp.