Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2020_4_a17, author = {V. I. Murashka and A. A. Piachonkin}, title = {On the number of points on one class of curves in a ring of residues}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {98--104}, publisher = {mathdoc}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2020_4_a17/} }
TY - JOUR AU - V. I. Murashka AU - A. A. Piachonkin TI - On the number of points on one class of curves in a ring of residues JO - Problemy fiziki, matematiki i tehniki PY - 2020 SP - 98 EP - 104 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2020_4_a17/ LA - ru ID - PFMT_2020_4_a17 ER -
V. I. Murashka; A. A. Piachonkin. On the number of points on one class of curves in a ring of residues. Problemy fiziki, matematiki i tehniki, no. 4 (2020), pp. 98-104. http://geodesic.mathdoc.fr/item/PFMT_2020_4_a17/
[1] K.F. Gauss, Trudy po teorii chisel, obschaya redaktsiya akademika I. M. Vinogradova, kommentarii chlena-korr. AN SSSR B.N. Delone, Izd-vo AN SSSR, M., 1959, 297 pp.
[2] W. Stangl, “Counting squares in $\mathbb{Z}_n$”, Mathematics Magazine, 69:4 (1996), 285–289 | MR | Zbl
[3] S. Finch, P. Sebah, Squares and cubes modulo $n$, arXiv: (Date of access: 25.03.2016) 0604465v3 [math.NT]
[4] M.A. Korolev, “On the average number of power residues modulo a composite number”, Izvestiya: Mathematics, 74:6 (2010), 1225–1255 | DOI | MR
[5] D. Eichhorn, M. Khan, A. Stein, “Sums and differences of the coordinates of points on modular hyperbolas”, Combinatorial number theory, 2009, 17–38 | MR
[6] I.M. Vinogradov, Osnovy teorii chisel, Gostekhizdat, M.–L., 1952, 178 pp.