Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2020_4_a16, author = {N. S. Kosenok and V. M. Selkin}, title = {On the $\sigma_i$-length of a finite $\sigma$-soluble group}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {95--97}, publisher = {mathdoc}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PFMT_2020_4_a16/} }
N. S. Kosenok; V. M. Selkin. On the $\sigma_i$-length of a finite $\sigma$-soluble group. Problemy fiziki, matematiki i tehniki, no. 4 (2020), pp. 95-97. http://geodesic.mathdoc.fr/item/PFMT_2020_4_a16/
[1] A.N. Skiba, “A generalization of a Hall theorem”, J. Algebra and its Application, 15:5 (2016), 1650085 | DOI | MR | Zbl
[2] A.N. Skiba, “Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups”, J. Algebra, 495 (2018), 114–129 | DOI | MR | Zbl
[3] A.N. Skiba, “On sublattices of the subgroup lattice defined by formation Fitting sets”, J. Algebra, 550 (2020), 69–85 | DOI | MR | Zbl
[4] D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | Zbl
[5] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl
[6] L.A. Shemetkov, A.N. Skiba, Formations of Algebraic Systems, Nauka, M., 1989 | MR | Zbl
[7] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR