On the centralizer of the $\sigma$-nilpotent residual of the $\sigma$-subnormal subgroup
Problemy fiziki, matematiki i tehniki, no. 4 (2020), pp. 91-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Throughout this paper, all groups are finite and $G$ always denotes a finite group. Moreover, $\sigma$ is some partition of the set of all primes $\mathbb{P}$, that is, $\sigma=\{\sigma_i\mid i\in I\}$, where $\mathbb{P}=\bigcup_{i\in I}\sigma_i$ and $\sigma_i\cap\sigma_j=\varnothing$ for all $i\ne j$. The group $G$ is said to be: $\sigma$-primary if $G$ is a $\sigma_i$-group for some $i$; $\sigma$-nilpotent if every chief factor $H/K$ of $G$ is $\sigma$-central in $G$, that is, $(H/K)\rtimes(G/C_G(H/K))$ is $\sigma$-primary. The symbol $G^{\mathfrak{N}_\sigma}$ denotes the $\sigma$-nilpotent residual of $G$, that is, the intersection of all normal subgroups $N$ of $G$ such that $G/N$ is $\sigma$-nilpotent; $Z_\sigma(G)$ is the $\sigma$-nilpotent hypercentre of $G$, that is, the product of all normal subgroups $N$ of $G$ such that either $N=1$ of $N\ne1$ and every chief factor of $G$ below $N$ is $\sigma$-central in $G$. A subgroup $A$ of $G$ is said to be $\sigma$-subnormal in $G$ if there is a subgroup chain $A=A_0\leqslant A_1\leqslant\dots\leqslant A_n=G$ such that either $A_{i-1}\unlhd A_i$ or $A_i/(A_{i-1})_{A_i}$ is $\sigma$-primary for all $i=1,\dots,n$. In this paper, we prove that if $S$ be a $\sigma$-subnormal subgroup of $G$ and $Z_\sigma(E)=1$ for every subgroup $E$ of $G$ such that $S\leqslant E$, then $C_G(S^{\mathfrak{N}_\sigma})\leqslant S^{\mathfrak{N}_\sigma}$.
Keywords: finite group, $\sigma$-nilpotent group, $\sigma$-subnormal subgroup, $\sigma$-nilpotent residual of a finite group, $\sigma$-nilpotent hypercentre.
@article{PFMT_2020_4_a15,
     author = {I. M. Dergacheva and I. P. Shabalina and E. A. Zadorozhnyuk},
     title = {On the centralizer of the $\sigma$-nilpotent residual of the $\sigma$-subnormal subgroup},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {91--94},
     publisher = {mathdoc},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2020_4_a15/}
}
TY  - JOUR
AU  - I. M. Dergacheva
AU  - I. P. Shabalina
AU  - E. A. Zadorozhnyuk
TI  - On the centralizer of the $\sigma$-nilpotent residual of the $\sigma$-subnormal subgroup
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2020
SP  - 91
EP  - 94
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2020_4_a15/
LA  - ru
ID  - PFMT_2020_4_a15
ER  - 
%0 Journal Article
%A I. M. Dergacheva
%A I. P. Shabalina
%A E. A. Zadorozhnyuk
%T On the centralizer of the $\sigma$-nilpotent residual of the $\sigma$-subnormal subgroup
%J Problemy fiziki, matematiki i tehniki
%D 2020
%P 91-94
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2020_4_a15/
%G ru
%F PFMT_2020_4_a15
I. M. Dergacheva; I. P. Shabalina; E. A. Zadorozhnyuk. On the centralizer of the $\sigma$-nilpotent residual of the $\sigma$-subnormal subgroup. Problemy fiziki, matematiki i tehniki, no. 4 (2020), pp. 91-94. http://geodesic.mathdoc.fr/item/PFMT_2020_4_a15/

[1] A.N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[2] A.N. Skiba, “Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups”, J. Algebra, 495 (2018), 114–129 | DOI | MR | Zbl

[3] L.A. Shemetkov, A.N. Skiba, Formations of Algebraic Systems, Nauka, M., 1989 | MR | Zbl

[4] A.N. Skiba, “O $\sigma$-svoistvakh konechnykh grupp I”, Problemy fiziki, matematiki i tekhniki, 2014, no. 4(21), 89–96

[5] A.N. Skiba, “On sublattices of the subgroup lattice defined by formation Fitting sets”, J. Algebra, 550 (2020), 69–85 | DOI | MR | Zbl

[6] A.N. Skiba, “On some classes of sublattices of the subgroup lattice”, J. Belarusian State Univ. Math. Informatics, 2019, no. 3, 35–47 | DOI | MR | Zbl

[7] J.C. Beidleman, A.N. Skiba, “On $\tau_\sigma$-quasinormal subgroups of finite groups”, J. Group Theory, 20 (2017), 955–964 | DOI | MR

[8] A. Ballester-Bolinches, S.F. Kamornikov, M.C. Pedraza-Aguilera, V. Perez-Calabuig, “On $\sigma$-subnormality criteria in finite $\sigma$-soluble groups”, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 114:94 (2020) | DOI | MR | Zbl

[9] E. Schenkman, “On the tower theorem for finite groups”, Pac. J. Math., 1955, no. 5, 995–998 | DOI | MR | Zbl

[10] L.A. Shemetkov, Formations of finite groups, Nauka, M., 1978 | MR | Zbl