Resonance model of lasing self-pulsation
Problemy fiziki, matematiki i tehniki, no. 4 (2020), pp. 75-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of a qualitative analysis of a semiclassical model of radiation generation in solid-state lasers and, based on it, a numerical simulation of the regime of regular pulsations arising under conditions of nonlinear drift and broadening of the resonance gain line due to the influence of near fields of dipoles and absorption in quasi-resonant transitions on the dielectric susceptibility of an active medium are presented. Modeling was carried out for the parameters of semiconductor quantum-dimensional structures.
Keywords: lasing self-sustaining pulsations, nonlinear amplification, quasicrystal of quantum dots
Mots-clés : dipole-dipole interaction.
@article{PFMT_2020_4_a12,
     author = {V. A. Yurevich},
     title = {Resonance model of lasing self-pulsation},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {75--80},
     publisher = {mathdoc},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2020_4_a12/}
}
TY  - JOUR
AU  - V. A. Yurevich
TI  - Resonance model of lasing self-pulsation
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2020
SP  - 75
EP  - 80
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2020_4_a12/
LA  - ru
ID  - PFMT_2020_4_a12
ER  - 
%0 Journal Article
%A V. A. Yurevich
%T Resonance model of lasing self-pulsation
%J Problemy fiziki, matematiki i tehniki
%D 2020
%P 75-80
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2020_4_a12/
%G ru
%F PFMT_2020_4_a12
V. A. Yurevich. Resonance model of lasing self-pulsation. Problemy fiziki, matematiki i tehniki, no. 4 (2020), pp. 75-80. http://geodesic.mathdoc.fr/item/PFMT_2020_4_a12/

[1] M. Yousefi et al., “New role for nonlinear dynamics and chaos in integrated semiconductor laser technology”, Phys. Rev. Lett., 98:4 (2007), 044101, 4 pp. | DOI

[2] Ya.I. Khanin, Osnovy dinamiki lazerov, Nauka, M., 1999, 368 pp.

[3] A.S. Baimuratov et al., “Quantum-dot supercrystals for future nanophotonics”, Scientific Reports, 3:1727 (2013), 1–9

[4] M.P. Boneschanscher et al., “Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices”, Science, 344:6190 (2014), 1377–1380 | DOI

[5] W.H. Evers et al., “Low-Dimensional Semiconductor Superlattices Formed by Geometric Control over Nanocrystal Attachment”, Nano Lett., 13:6 (2013), 2317–2323 | DOI

[6] V.I. Yudson, V.I. Rupasov, “Nelineinaya rezonansnaya optika tonkikh plenok: metod obratnoi zadachi”, ZhETF, 93 (1987), 494–501

[7] M. Benedict et al., “Reflection and transmission of ultrashort light pulses through a thin resonant medium: Localfield effects”, Phys. Rev. A, 43:7 (1991), 3845–3853 | DOI

[8] R.F. Malikov, V.A. Malyshev, I.V. Ryzhov, “Nonlinear optical response of a 2D quantum dot supercrystal”, EPJ Web of Conferences, 161 (2017), 02014–02016 | DOI

[9] V.A. Malyshev et al., “Nonlinear optical dynamics of a 2D semiconductor quantum dot super-crystal: Emerging multistability, self-oscillations and chaos”, Journal of Physics: Conf. Series, 1220 (2019), 012006–012019 | DOI

[10] V.A. Yurevich, “Impulsy sverkhizlucheniya v tonkom sloe plotnoi rezonansnoi sredy”, Problemy fiziki, matematiki i tekhniki, 2019, no. 4 (41), 31–35

[11] P.A. Apanasevich, Osnovy teorii vzaimodeistviya sveta s veschestvom, Havuka i tekhnika, Mn., 1977, 496 pp. | MR

[12] E. Garmire, “Resonant optical nonlinearities in semiconductors”, IEEE Journ. Sel. Top. Quant. Electron., 6:6 (2000), 1094–1110 | DOI

[13] G.Ya. Slepyan et al., “Rabi oscillations in a semiconductor quantum dot: Influence of local fields”, Phys. Rev. B, 70:4 (2004), 045320, 5 pp. | DOI

[14] P. Prabhakaran et al., “Quantum dots (QDs) for photonic applications”, Optical Materials Express, 2 (2012), 578–586 | DOI