Semiconductor photoelectric solar energy converters metrology
Problemy fiziki, matematiki i tehniki, no. 3 (2020), pp. 22-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main characteristics of solar radiation for conversion into electrical energy using semiconductor photoelectric converters (PEC), including the conditions of the Republic of Belarus, are considered. The regulatory framework for preparation and testing of PEC is presented. The principle of operation and the main characteristics of a hardware-measuring complex for testing PEC in a pulse mode are presented.
Keywords: photoelectric converter, metrology, solar simulator, AM1.5.
@article{PFMT_2020_3_a3,
     author = {V. B. Zalessky and V. S. Kalinovsky and A. A. Khodin},
     title = {Semiconductor photoelectric solar energy converters metrology},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {22--29},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2020_3_a3/}
}
TY  - JOUR
AU  - V. B. Zalessky
AU  - V. S. Kalinovsky
AU  - A. A. Khodin
TI  - Semiconductor photoelectric solar energy converters metrology
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2020
SP  - 22
EP  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2020_3_a3/
LA  - ru
ID  - PFMT_2020_3_a3
ER  - 
%0 Journal Article
%A V. B. Zalessky
%A V. S. Kalinovsky
%A A. A. Khodin
%T Semiconductor photoelectric solar energy converters metrology
%J Problemy fiziki, matematiki i tehniki
%D 2020
%P 22-29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2020_3_a3/
%G ru
%F PFMT_2020_3_a3
V. B. Zalessky; V. S. Kalinovsky; A. A. Khodin. Semiconductor photoelectric solar energy converters metrology. Problemy fiziki, matematiki i tehniki, no. 3 (2020), pp. 22-29. http://geodesic.mathdoc.fr/item/PFMT_2020_3_a3/

[1] D.R. Myers, Solar radiation. Practical modeling for renewable energy applications, CRC Press, Taylor Francis Group LLC, USA/UK, 2013, 172 pp.

[2] ASTM E490-00. Standard for solar constant and air mass zero solar spectral irradiance tables, Amer. Soc. Testing and Materials, Philadelphia, West Conshohocken PA, USA, 2000, 16 pp.

[3] Solar energy – Reference solar spectral irradiance at the ground at different receiving conditions – Part 1: Direct normal and hemispherical solar irradiance for air mass 1,5: ISO 9845-1:1992, Internat. Organ. for Standardization, 1992, 14 pp.

[4] I.G. Usoskin, “A history of solar activity over millennia”, Review Article. Living Rev. Sol. Phys., 14:3 (2017), 97

[5] D.H. Hathaway, “The Solar Cycle”, Living Rev. Solar Phys., 12:4 (2015), 87

[6] K.L. Yeo, W.T. Ball, N.A. Krivova, S.K. Solanki, Y.C. Unruh, J. Morrill, “UV solar irradiance in observations and the NRLSSI and SATIRE-S models”, J. Geophys. Res., 120 (2015), arXiv: 1507.01224v1 | DOI | Zbl

[7] C.A. Gueymard, “A reevaluation of the solar constant based on a 42-year total solar irradiance time series and a reconciliation of spaceborne observations”, SolarEnergy, 168 (2018), 2–9

[8] Promyshlennost Respubliki Belarus. Statisticheskii sbornik, Natsionalnyi statisticheskii komitet Respubliki Belarus, Mn., 2019, 150 pp.

[9] V.B. Zalesskii, S.A. Sergienya, A.A. Khodin, V.F. Gremenok, “Analiz tonkoplenochnykh solnechnykh elementov na osnove CIGS poluprovodnika s varizonnoi strukturoi”, Alternativnaya energetika i ekologiya, 2008, no. 8, 56–61

[10] V.V. Tkachenko, A.I. Konoiko, V.B. Zalesskii, V.A. Pilipovich, “Golograficheskii kontsentrator dlya solnechnogo elementa”, Golografiya. Nauka i praktika, Sb. trudov 12-i Mezhdun. konf. «Golografiya. Nauka i Praktika, GOLOEKSPO-2015» (12–15 oktyabrya 2015 g., Kazan, Rossiya), 2015, 143–146

[11] V.F. Gremenok, M.S. Tivanov, V.B. Zalecskii, Solnechnye elementy na osnove poluprovodnikovykh materialov, Izd. Tsentr BGU, Minsk, 2007, 222 pp.

[12] Sovmestimost tekhnicheskikh sredstv elektromagnitnaya. Elektromagnitnye pomekhi ot tekhnicheskikh sredstv, primenyaemykh v promyshlennykh zonakh. Normy i metody ispytanii, GOST 30804.6.4-2013 (IEC 61000-6-4:2006). Vved. 01.01.2014, Standartinform, M., 2013, 18 pp.

[13] Priemniki izlucheniya poluprovodnikovye fotoelektricheskie i fotopriemnye ustroistva. Metody izmereniya fotoelektricheskikh parametrov i opredeleniya kharakteristik, GOST 17772-88. Vved. 01.07.1989, Izdatelstvo standartov, M., 1988, 85 pp.

[14] Gosudarstvennaya poverochnaya skhema dlya sredstv izmerenii spektralnoi plotnosti energeticheskoi yarkosti v diapazone dlin voln ot 0,04 do 0,25 mkm, GOST 8.197-2005. Vved. 01.09.2005, Standartinform, M., 2005, 7 pp.

[15] Pryamye izmereniya s mnogokratnymi nablyudeniyami. Metody obrabotki rezultatov nablyudenii, GOST 8.207-76. Vved. 01.01.1977, Izdatelstvo standartov, M., 1986, 16 pp.

[16] Gosudarstvennaya poverochnaya skhema dlya sredstv izmerenii potoka izlucheniya i energeticheskoi osveschennosti v diapazone dlin voln ot 0,03 do 0,40 mkm, GOST 8.552-2001. Vved. 11.01.2002, IPK Izdatelstvo standartov, M., 2002, 7 pp.

[17] Kompleksnaya sistema kontrolya kachestva. Izdeliya elektronnoi tekhniki, kvantovoi elektroniki i elektrotekhnicheskie. Metody ispytanii (s izmeneniyami 1–10), GOST 20.57.406-81. Vved. 01.01.1982, IPK Izdatelstvo standartov, M., 2003, 207 pp.

[18] G. Friesen, H.A. Ossenbrink, “Capacitance effects in highefficiency cells”, Solar Energy Materials and Solar Cells, 48:1–4 (1997), 77–83 | DOI

[19] A. Edler, M. Schlemmer, J. Ranzmeyer, R. Harney, “Understanding and overcoming the influence of capacitance effects on the measurement of high efficiency silicon solar cells”, SiliconPV (April 03–05, 2012, Leuven, Belgium), Energy Procedia, 27, 2012, 267–272 | DOI

[20] C. Monokroussos, D. Etienne, K. Morita, C. Dreier, U. Therhaag, W. Herrmann, “Accurate power measurements of high capacitance PV modules with short pulse simulators in a single flash”, 27th Europ. Photovolt. Solar Energy Conf. Exhib., Proc. (Frankfurt, Germany, 24–28 Sept. 2012), eds. S. Nowak, A. Jäger-Waldau, P. Helm, WIP, München, Germany, 2012, 3687–3696

[21] M. Herman, M. Jankovec, M. Topič, “Optimal I-V curve scan time of solar cells and modules in light of irradiance level”, Int. J. Photoenergy, 2012 (2012), 151452, 11 pp. | DOI