Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2020_3_a3, author = {V. B. Zalessky and V. S. Kalinovsky and A. A. Khodin}, title = {Semiconductor photoelectric solar energy converters metrology}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {22--29}, publisher = {mathdoc}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2020_3_a3/} }
TY - JOUR AU - V. B. Zalessky AU - V. S. Kalinovsky AU - A. A. Khodin TI - Semiconductor photoelectric solar energy converters metrology JO - Problemy fiziki, matematiki i tehniki PY - 2020 SP - 22 EP - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2020_3_a3/ LA - ru ID - PFMT_2020_3_a3 ER -
V. B. Zalessky; V. S. Kalinovsky; A. A. Khodin. Semiconductor photoelectric solar energy converters metrology. Problemy fiziki, matematiki i tehniki, no. 3 (2020), pp. 22-29. http://geodesic.mathdoc.fr/item/PFMT_2020_3_a3/
[1] D.R. Myers, Solar radiation. Practical modeling for renewable energy applications, CRC Press, Taylor Francis Group LLC, USA/UK, 2013, 172 pp.
[2] ASTM E490-00. Standard for solar constant and air mass zero solar spectral irradiance tables, Amer. Soc. Testing and Materials, Philadelphia, West Conshohocken PA, USA, 2000, 16 pp.
[3] Solar energy – Reference solar spectral irradiance at the ground at different receiving conditions – Part 1: Direct normal and hemispherical solar irradiance for air mass 1,5: ISO 9845-1:1992, Internat. Organ. for Standardization, 1992, 14 pp.
[4] I.G. Usoskin, “A history of solar activity over millennia”, Review Article. Living Rev. Sol. Phys., 14:3 (2017), 97
[5] D.H. Hathaway, “The Solar Cycle”, Living Rev. Solar Phys., 12:4 (2015), 87
[6] K.L. Yeo, W.T. Ball, N.A. Krivova, S.K. Solanki, Y.C. Unruh, J. Morrill, “UV solar irradiance in observations and the NRLSSI and SATIRE-S models”, J. Geophys. Res., 120 (2015), arXiv: 1507.01224v1 | DOI | Zbl
[7] C.A. Gueymard, “A reevaluation of the solar constant based on a 42-year total solar irradiance time series and a reconciliation of spaceborne observations”, SolarEnergy, 168 (2018), 2–9
[8] Promyshlennost Respubliki Belarus. Statisticheskii sbornik, Natsionalnyi statisticheskii komitet Respubliki Belarus, Mn., 2019, 150 pp.
[9] V.B. Zalesskii, S.A. Sergienya, A.A. Khodin, V.F. Gremenok, “Analiz tonkoplenochnykh solnechnykh elementov na osnove CIGS poluprovodnika s varizonnoi strukturoi”, Alternativnaya energetika i ekologiya, 2008, no. 8, 56–61
[10] V.V. Tkachenko, A.I. Konoiko, V.B. Zalesskii, V.A. Pilipovich, “Golograficheskii kontsentrator dlya solnechnogo elementa”, Golografiya. Nauka i praktika, Sb. trudov 12-i Mezhdun. konf. «Golografiya. Nauka i Praktika, GOLOEKSPO-2015» (12–15 oktyabrya 2015 g., Kazan, Rossiya), 2015, 143–146
[11] V.F. Gremenok, M.S. Tivanov, V.B. Zalecskii, Solnechnye elementy na osnove poluprovodnikovykh materialov, Izd. Tsentr BGU, Minsk, 2007, 222 pp.
[12] Sovmestimost tekhnicheskikh sredstv elektromagnitnaya. Elektromagnitnye pomekhi ot tekhnicheskikh sredstv, primenyaemykh v promyshlennykh zonakh. Normy i metody ispytanii, GOST 30804.6.4-2013 (IEC 61000-6-4:2006). Vved. 01.01.2014, Standartinform, M., 2013, 18 pp.
[13] Priemniki izlucheniya poluprovodnikovye fotoelektricheskie i fotopriemnye ustroistva. Metody izmereniya fotoelektricheskikh parametrov i opredeleniya kharakteristik, GOST 17772-88. Vved. 01.07.1989, Izdatelstvo standartov, M., 1988, 85 pp.
[14] Gosudarstvennaya poverochnaya skhema dlya sredstv izmerenii spektralnoi plotnosti energeticheskoi yarkosti v diapazone dlin voln ot 0,04 do 0,25 mkm, GOST 8.197-2005. Vved. 01.09.2005, Standartinform, M., 2005, 7 pp.
[15] Pryamye izmereniya s mnogokratnymi nablyudeniyami. Metody obrabotki rezultatov nablyudenii, GOST 8.207-76. Vved. 01.01.1977, Izdatelstvo standartov, M., 1986, 16 pp.
[16] Gosudarstvennaya poverochnaya skhema dlya sredstv izmerenii potoka izlucheniya i energeticheskoi osveschennosti v diapazone dlin voln ot 0,03 do 0,40 mkm, GOST 8.552-2001. Vved. 11.01.2002, IPK Izdatelstvo standartov, M., 2002, 7 pp.
[17] Kompleksnaya sistema kontrolya kachestva. Izdeliya elektronnoi tekhniki, kvantovoi elektroniki i elektrotekhnicheskie. Metody ispytanii (s izmeneniyami 1–10), GOST 20.57.406-81. Vved. 01.01.1982, IPK Izdatelstvo standartov, M., 2003, 207 pp.
[18] G. Friesen, H.A. Ossenbrink, “Capacitance effects in highefficiency cells”, Solar Energy Materials and Solar Cells, 48:1–4 (1997), 77–83 | DOI
[19] A. Edler, M. Schlemmer, J. Ranzmeyer, R. Harney, “Understanding and overcoming the influence of capacitance effects on the measurement of high efficiency silicon solar cells”, SiliconPV (April 03–05, 2012, Leuven, Belgium), Energy Procedia, 27, 2012, 267–272 | DOI
[20] C. Monokroussos, D. Etienne, K. Morita, C. Dreier, U. Therhaag, W. Herrmann, “Accurate power measurements of high capacitance PV modules with short pulse simulators in a single flash”, 27th Europ. Photovolt. Solar Energy Conf. Exhib., Proc. (Frankfurt, Germany, 24–28 Sept. 2012), eds. S. Nowak, A. Jäger-Waldau, P. Helm, WIP, München, Germany, 2012, 3687–3696
[21] M. Herman, M. Jankovec, M. Topič, “Optimal I-V curve scan time of solar cells and modules in light of irradiance level”, Int. J. Photoenergy, 2012 (2012), 151452, 11 pp. | DOI