Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2020_3_a2, author = {Yu. A. Grishechkin and A. V. Paulenko}, title = {Approximate analytical method for solving the schr\"odinger equation with the {Gaussian} potential in the momentum representation}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {18--21}, publisher = {mathdoc}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2020_3_a2/} }
TY - JOUR AU - Yu. A. Grishechkin AU - A. V. Paulenko TI - Approximate analytical method for solving the schrödinger equation with the Gaussian potential in the momentum representation JO - Problemy fiziki, matematiki i tehniki PY - 2020 SP - 18 EP - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2020_3_a2/ LA - ru ID - PFMT_2020_3_a2 ER -
%0 Journal Article %A Yu. A. Grishechkin %A A. V. Paulenko %T Approximate analytical method for solving the schrödinger equation with the Gaussian potential in the momentum representation %J Problemy fiziki, matematiki i tehniki %D 2020 %P 18-21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2020_3_a2/ %G ru %F PFMT_2020_3_a2
Yu. A. Grishechkin; A. V. Paulenko. Approximate analytical method for solving the schrödinger equation with the Gaussian potential in the momentum representation. Problemy fiziki, matematiki i tehniki, no. 3 (2020), pp. 18-21. http://geodesic.mathdoc.fr/item/PFMT_2020_3_a2/
[1] Z. Flyugge, Zadachi po kvantovoi mekhanike, v 2 t., v. 1, 3-izd., LKI, M., 2010, 344 pp.
[2] G. Stephenson, “Eigenvalues of the Schrodinger equation with a Gaussian potential”, J. Phys. A: Math Gen., 10 (1977), L229–L232 | DOI | MR | Zbl
[3] C.S. Lai, “On the Schrodinger equation for the Gaussian potential $-A\mathrm{exp}(-\lambda r^2)$”, J. Phys. A: Math Gen., 16 (1983), L181–L185 | DOI | MR | Zbl
[4] R.E. Crandale, “Fast eigenvalue algorithm for central potentials”, J. Phys. A: Math Gen., 16 (1983), L395–L399 | DOI | MR
[5] A. Chatterjee, “$1 / N$ expansion for Gaussian potential”, J. Phys. A: Math. Gen., 18 (1985), 2403–2408 | DOI | MR
[6] S.S. Gomez, R.H. Romero, “Few-electron semiconductor quantum dots with Gaussian confinement”, Central Eur. J. Phys., 7 (2009), 12–21
[7] K. Koksal, “A simple analytical expression for bound state energies for an attractive Gaussian confining potential”, Phys. Scr., 86 (2012), 035006 | DOI | Zbl
[8] V.V. Kudryashov, A.V. Baran, “Reshenie radialnogo uravneniya Shredingera dlya potentsiala Gaussa v modifitsirovannom VKB-priblizhenii”, Doklady Natsionalnoi akademii nauk Belarusi, 57:5 (2013), 43–48 | Zbl
[9] H. Mutuk, “Asymptotic iteration and variational methods for Gaussian potential”, Pramana J. Phys., 2019, 66 | DOI
[10] Yu.A. Grishechkin, A.V. Pavlenko, V.N. Kapshai, “Ob odnom priblizhennom analiticheskom metode resheniya uravneniya Shredingera s gaussovym potentsialom”, Problemy fiziki, matematiki i tekhniki, 2019, no. 4 (41), 7–10
[11] A.A. Logunov, A.N. Tavkhelidze, “Quasi-Optical Approach in Quantum Field Theory”, Nuovo Cimento, 29:2 (1963), 380–399 | DOI | MR
[12] V.G. Kadyshevskii, R.M. Mir-Kasimov, N.B. Skachkov, “Trekhmernaya formulirovka relyativistskoi problemy dvukh tel”, EChAYa, 2:3 (1972), 635–690 | MR
[13] G. Arfken, Matematicheskie metody v fizike, Atomizdat, M., 1970, 712 pp.
[14] I.S. Gradshtein, I.M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvodnykh, Izd. 7-e, BKhV-Peterburg, SPb., 2011, 1232 pp.