A criterion for the existence and uniqueness of polyorthogonal polynomials of the first type
Problemy fiziki, matematiki i tehniki, no. 3 (2020), pp. 82-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion for the uniqueness of polyorthogonal polynomials of type I associated with an arbitrary system of power series of the Laurent type is formulated and proved. An explicit form of these polynomials and an explicit form for the corresponding polynomial of the second kind is found. The proven statements complement well-known results in the theory of orthogonal and polyorthogonal polynomials.
Mots-clés : orthogonal polynomials, polyorthogonal polynomials.
Keywords: normal index, perfect system, Hankel determinant
@article{PFMT_2020_3_a13,
     author = {A. P. Starovoitov and N. V. Ryabchenko and A. A. Drapeza},
     title = {A criterion for the existence and uniqueness of polyorthogonal polynomials of the first type},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {82--86},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2020_3_a13/}
}
TY  - JOUR
AU  - A. P. Starovoitov
AU  - N. V. Ryabchenko
AU  - A. A. Drapeza
TI  - A criterion for the existence and uniqueness of polyorthogonal polynomials of the first type
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2020
SP  - 82
EP  - 86
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2020_3_a13/
LA  - ru
ID  - PFMT_2020_3_a13
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%A N. V. Ryabchenko
%A A. A. Drapeza
%T A criterion for the existence and uniqueness of polyorthogonal polynomials of the first type
%J Problemy fiziki, matematiki i tehniki
%D 2020
%P 82-86
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2020_3_a13/
%G ru
%F PFMT_2020_3_a13
A. P. Starovoitov; N. V. Ryabchenko; A. A. Drapeza. A criterion for the existence and uniqueness of polyorthogonal polynomials of the first type. Problemy fiziki, matematiki i tehniki, no. 3 (2020), pp. 82-86. http://geodesic.mathdoc.fr/item/PFMT_2020_3_a13/

[1] E. Schmidt, “Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener”, Math. Ann., 63 (1907), 433–476 | DOI | MR | Zbl

[2] I.P. Natanson, Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949

[3] N.V. Ryabchenko, V.A. Volkov, A.P. Starovoitov, “Kriterii suschestvovaniya i edinstvennosti poliortogonalnykh mnogochlenov vtorogo roda”, Problemy fiziki, matematiki i tekhniki, 2020, no. 2(43), 85–90 | MR

[4] E.M. Nikishin, V.N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988

[5] E. Frank, “Orthogonality properties of C-fractions”, Bull. Amer. Math. Soc., 58 (1955), 384–390 | MR

[6] A.I. Aptekarev, F. Marcellán, I. Rocha, “Semiclassical multiple orthogonal polynomials and the properties of Jacobi–Bessel polynomials”, J. Approx. Theory, 90:1 (1997), 117–146 | DOI | MR | Zbl

[7] A.I. Aptekarev, “Multiple orthogonal polynomials”, Comput. Appl. Math., 99:1–2 (1998), 423–447 | DOI | MR | Zbl

[8] A.I. Aptekarev, V. Kaliaguine, J. Van Iseghem, “The genetic sums' representation for the moments of a system of Stieltjes functions and its application”, Constr. Approx., 16 (2000), 487–524 | DOI | MR | Zbl

[9] W. Van Assche, E. Coussement, “Some classical multiple orthogonal polynomials”, J. Comput. Appl. Math., 127 (2001), 317–347 | DOI | MR | Zbl

[10] A.I. Aptekarev, A. Branquinho, W. Van Assche, “Multiple orthogonal polynomials for classcal weights”, Transactions of the American Mathematical Society, 355:10 (2003), 3887–3914 | DOI | MR | Zbl

[11] A.B.J. Kuijlaars, A. Martínez-Finkelshtein, F. Wielonsky, “Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights”, Comm. Math. Phys., 286:1 (2009), 217–275 | DOI | MR | Zbl