Solutions of the wave equation in parabolic rotary coordinates. I. 3D Kummer--Kummer light beams with the continuous angular index
Problemy fiziki, matematiki i tehniki, no. 3 (2020), pp. 13-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

Analytical expressions in the closed form for nonparaxial and paraxial 3D Kummer–Kummer (K-K) beams with continuous angular index $m$ in parabolic rotary coordinates are offered and analyzed. Physical restrictions on possible values of the free parameters of such beams are formulated.
Keywords: nonparaxial beams, paraxial beams, parabolic beams, Kummer–Kummer beams.
@article{PFMT_2020_3_a1,
     author = {S. S. Girgel},
     title = {Solutions of the wave equation in parabolic rotary coordinates. {I.} {3D} {Kummer--Kummer} light beams with the continuous angular index},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {13--17},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2020_3_a1/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Solutions of the wave equation in parabolic rotary coordinates. I. 3D Kummer--Kummer light beams with the continuous angular index
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2020
SP  - 13
EP  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2020_3_a1/
LA  - ru
ID  - PFMT_2020_3_a1
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Solutions of the wave equation in parabolic rotary coordinates. I. 3D Kummer--Kummer light beams with the continuous angular index
%J Problemy fiziki, matematiki i tehniki
%D 2020
%P 13-17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2020_3_a1/
%G ru
%F PFMT_2020_3_a1
S. S. Girgel. Solutions of the wave equation in parabolic rotary coordinates. I. 3D Kummer--Kummer light beams with the continuous angular index. Problemy fiziki, matematiki i tehniki, no. 3 (2020), pp. 13-17. http://geodesic.mathdoc.fr/item/PFMT_2020_3_a1/

[1] S.S. Girgel, “Bezdifraktsionnye asimmetrichnye volnovye polya Besselya nepreryvnogo poryadka”, Problemy fiziki, matematiki i tekhniki, 2017, no. 1 (30), 13–16

[2] S.S. Girgel, “Obobschennye puchki Besselya–Gaussa nepreryvnogo poryadka”, Problemy fiziki, matematiki i tekhniki, 2015, no. 4(25), 11–15

[3] S.S. Girgel, “Obobschennye asimmetrichnye volnovye puchki Besselya–Gaussa nepreryvnogo poryadka”, Problemy fiziki, matematiki i tekhniki, 2017, no. 2 (31), 10–14

[4] S.S. Girgel, “Tsirkulyarnye 3D svetovye puchki Kummera–Gaussa s nepreryvnym uglovym spektrom”, Problemy fiziki, matematiki i tekhniki, 2019, no. 1(38), 4–7

[5] S.S. Girgel, “Puchki Kummera bez gaussovoi apodizatsii s perenosimoi konechnoi moschnostyu”, Problemy, fiziki, matematiki i tekhniki, 2015, no. 3(24), 7–9

[6] S.S. Girgel, “Opticheskie puchki Vebera–Gaussa s nepreryvnym uglovym spektrom”, Problemy fiziki, matematiki i tekhniki, 2018, no. 4(37), 1–5

[7] U. Miller, Simmetriya i razdelenie peremennykh, Mir, M., 1981, 342 pp.

[8] F.M. Mors, G.M. Feshbakh, Metody teoreticheskoi fiziki, Per. s angl., v. 2, IL, M., 1960, 886 pp.

[9] D. Deng et al., “Three-dimensional nonparaxial beams in parabolic rotational coordinates”, Optics Letters, 38:19 (2013), 3934–3936 | DOI

[10] L.C. Woon, L.Y. Willartzen, “Helmholtz equation in parabolic rotation coordinates application to wave problems in quantum mechanics and acoustics”, Mathematics and Computers in simulation, 65 (2004), 337–349 | DOI | MR

[11] W. Miller, “Lie theory and separation of variables. II. Parabolic coordinates”, Siam J. Math. Anal., 5:5 (1974), 822–836 | DOI | MR | Zbl

[12] A.A. Kovalev, V.V. Kotlyar, “Lazernye puchki Khankelya–Besselya”, Kompyuternaya optika, 35:3 (2011), 297–304 | Zbl

[13] Abramovits M., Stigan I. (red.), Spravochnik po spetsialnym funktsiyam, Per. s angl., Nauka, M., 1979, 832 pp.

[14] E. Yanke F. Emde, F. Lesh, Spetsialnye funktsii, Nauka, M., 1977, 342 pp.

[15] Z. Flyugge, Zadachi po kvantovoi mekhanike, v. 2, Mir, M., 1974, 418 pp.