On one operation on the formations of finite groups
Problemy fiziki, matematiki i tehniki, no. 2 (2020), pp. 58-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi$ be a set of primes. In this article, the operation $w_\pi^*$ on the formations of finite groups is introduced. If $\mathfrak{F}$ is a non-empty formation, then $w_\pi^*\mathfrak{F}$ is the class of all groups $G$ such that $\pi(G)\subseteq\pi(\mathfrak{F})$ and every Sylow $q$-subgroup of $G$ is strongly $\mathrm{K}$-$\mathfrak{F}$-subnormal in $G$ for $q\in\pi\cap\pi(G)$. The properties of $w_\pi^*$ are obtained, in particular, $w_\pi^*\mathfrak{F}=w_\pi^*(w_\pi^*\mathfrak{F})$ for hereditary formations $\mathfrak{F}$. Hereditary saturated formations $\mathfrak{F}$ for which $w_\pi^*\mathfrak{F}$ coincides with $\mathfrak{F}$ have been found.
Keywords: finite group, Sylow subgroup, normalizer of Sylow subgroup, hereditary formation, $\mathfrak{F}$-subnormal subgroup, strongly $\mathrm{K}$-$\mathfrak{F}$-subnormal subgroup.
@article{PFMT_2020_2_a9,
     author = {T. I. Vasilyeva and A. G. Koranchuk},
     title = {On one operation on the formations of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {58--63},
     publisher = {mathdoc},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2020_2_a9/}
}
TY  - JOUR
AU  - T. I. Vasilyeva
AU  - A. G. Koranchuk
TI  - On one operation on the formations of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2020
SP  - 58
EP  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2020_2_a9/
LA  - en
ID  - PFMT_2020_2_a9
ER  - 
%0 Journal Article
%A T. I. Vasilyeva
%A A. G. Koranchuk
%T On one operation on the formations of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2020
%P 58-63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2020_2_a9/
%G en
%F PFMT_2020_2_a9
T. I. Vasilyeva; A. G. Koranchuk. On one operation on the formations of finite groups. Problemy fiziki, matematiki i tehniki, no. 2 (2020), pp. 58-63. http://geodesic.mathdoc.fr/item/PFMT_2020_2_a9/

[1] T. Hawkes, “On formation subgroups of a finite soluble group”, J. London Math. Soc., 44 (1969), 243–250 | MR | Zbl

[2] L.A. Shemetkov, Formations of finite groups, Nauka, M., 1987, 272 pp. (In Russian) | MR

[3] O.H. Kegel, “Untergruppenverbände endlicher Gruppen, die den Subnormalteilerverband echt enthalten”, Arch. Math., 30:3 (1978), 225–228 | MR | Zbl

[4] A. Ballester-Bolinches, L.M. Ezquerro, Classes of Finite Groups, Springer-Verlag, 2006, 385 pp. | MR | Zbl

[5] A.F. Vasil'ev, “Finite groups with strongly $\mathrm{K}$-$\mathfrak{F}$-subnormal Sylow subgroups”, Problems of Physics, Mathematics and Technics, 2018, no. 4 (37), 66–71 (In Russian) | Zbl

[6] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New-York, 1992, 891 pp. | MR

[7] V.N. Kniahina, V.S. Monakhov, “On supersolvability of finite groups with $\mathbb{P}$-subnormal subgroups”, Internat. J. of Group Theory, 2:4 (2013), 21–29 | MR | Zbl

[8] V.N. Semenchuk, “Minimal non $\mathfrak{F}$-subgroups”, Algebra and Logik, 18:3 (1979), 348–382 | MR | Zbl

[9] A.F. Vasil'ev, T.I. Vasil'eva, V.N. Tyutyanov, “On finite groups similar to supersoluble groups”, Problems of Physics, Mathematics and Technics, 2010, no. 2 (3), 21–27 (In Russian) | Zbl

[10] A.F. Vasil'ev, T.I. Vasil'eva, V.N. Tyutyanov, “On the finite groups of supersoluble type”, Siberian Math. J., 51:6 (2010), 1004–1012 | MR | Zbl