On one operation on the formations of finite groups
Problemy fiziki, matematiki i tehniki, no. 2 (2020), pp. 58-63

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi$ be a set of primes. In this article, the operation $w_\pi^*$ on the formations of finite groups is introduced. If $\mathfrak{F}$ is a non-empty formation, then $w_\pi^*\mathfrak{F}$ is the class of all groups $G$ such that $\pi(G)\subseteq\pi(\mathfrak{F})$ and every Sylow $q$-subgroup of $G$ is strongly $\mathrm{K}$-$\mathfrak{F}$-subnormal in $G$ for $q\in\pi\cap\pi(G)$. The properties of $w_\pi^*$ are obtained, in particular, $w_\pi^*\mathfrak{F}=w_\pi^*(w_\pi^*\mathfrak{F})$ for hereditary formations $\mathfrak{F}$. Hereditary saturated formations $\mathfrak{F}$ for which $w_\pi^*\mathfrak{F}$ coincides with $\mathfrak{F}$ have been found.
Keywords: finite group, Sylow subgroup, normalizer of Sylow subgroup, hereditary formation, $\mathfrak{F}$-subnormal subgroup, strongly $\mathrm{K}$-$\mathfrak{F}$-subnormal subgroup.
@article{PFMT_2020_2_a9,
     author = {T. I. Vasilyeva and A. G. Koranchuk},
     title = {On one operation on the formations of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {58--63},
     publisher = {mathdoc},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2020_2_a9/}
}
TY  - JOUR
AU  - T. I. Vasilyeva
AU  - A. G. Koranchuk
TI  - On one operation on the formations of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2020
SP  - 58
EP  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2020_2_a9/
LA  - en
ID  - PFMT_2020_2_a9
ER  - 
%0 Journal Article
%A T. I. Vasilyeva
%A A. G. Koranchuk
%T On one operation on the formations of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2020
%P 58-63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2020_2_a9/
%G en
%F PFMT_2020_2_a9
T. I. Vasilyeva; A. G. Koranchuk. On one operation on the formations of finite groups. Problemy fiziki, matematiki i tehniki, no. 2 (2020), pp. 58-63. http://geodesic.mathdoc.fr/item/PFMT_2020_2_a9/