Polycrystalline solar cells electrical characteristics forecasting based on their degradation models
Problemy fiziki, matematiki i tehniki, no. 1 (2020), pp. 61-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present the results of accelerated tests B class based solar cells. It is established that the self-similarity of the experiment is observed at temperatures up to 150–160$^\circ$ C and lighting levels up to 2000 W/m$^2$. During over 168 h of accelerated testing the relative degradation of efficiency was 5,8%. The pattern of degradation of the duty cycle ($ff$) and short-circuit current ($I_{sc}$) of the solar cells at the initial and final time points of the tests is established.
Keywords: polycrystalline solar cells, tests, degradation models, renewable energy sources.
@article{PFMT_2020_1_a8,
     author = {V. V. Khoroshko and V. F. Gremenok and E. N. Shneiderov and A. S. Tereshkova and O. A. Aksenov and N. M. Bruj},
     title = {Polycrystalline solar cells electrical characteristics forecasting based on their degradation models},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {61--64},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2020_1_a8/}
}
TY  - JOUR
AU  - V. V. Khoroshko
AU  - V. F. Gremenok
AU  - E. N. Shneiderov
AU  - A. S. Tereshkova
AU  - O. A. Aksenov
AU  - N. M. Bruj
TI  - Polycrystalline solar cells electrical characteristics forecasting based on their degradation models
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2020
SP  - 61
EP  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2020_1_a8/
LA  - ru
ID  - PFMT_2020_1_a8
ER  - 
%0 Journal Article
%A V. V. Khoroshko
%A V. F. Gremenok
%A E. N. Shneiderov
%A A. S. Tereshkova
%A O. A. Aksenov
%A N. M. Bruj
%T Polycrystalline solar cells electrical characteristics forecasting based on their degradation models
%J Problemy fiziki, matematiki i tehniki
%D 2020
%P 61-64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2020_1_a8/
%G ru
%F PFMT_2020_1_a8
V. V. Khoroshko; V. F. Gremenok; E. N. Shneiderov; A. S. Tereshkova; O. A. Aksenov; N. M. Bruj. Polycrystalline solar cells electrical characteristics forecasting based on their degradation models. Problemy fiziki, matematiki i tehniki, no. 1 (2020), pp. 61-64. http://geodesic.mathdoc.fr/item/PFMT_2020_1_a8/

[1] D. Jordan, S. Kurtz, “Photovoltaic Degradation Rates — An Analytical Review”, Progress in Photovoltaics: Research and Applications, 21:1, January (2013), 12–29 | DOI

[2] V.F. Greemenok, M.S. Tivanov, V.B. Zalecskii, Solnechnye elementy na osnove poluprovodnikovykh materialov, Izd. Tsentr BGU, Minsk, 2007, 222 pp.

[3] J. Käsewieter, F. Haase, M.H. Larrodé, M. Köntges, “Cracks in Solar Cell Metallization Leading to Module Power Loss under Mechanical Loads”, Energy Procedia, 55 (2014), 469–477 | DOI

[4] E. Connell, A. Semichaevsky, “Degradation of polycrystalline Si solar cell efficiency with increased incident optical power — Experiments and theory”, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 2016