Polycrystalline solar cells electrical characteristics forecasting based on their degradation models
Problemy fiziki, matematiki i tehniki, no. 1 (2020), pp. 61-64
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we present the results of accelerated tests B class based solar cells. It is established that the self-similarity of the experiment is observed at temperatures up to 150–160$^\circ$ C and lighting levels up to 2000 W/m$^2$. During over 168 h of accelerated testing the relative degradation of efficiency was 5,8%. The pattern of degradation of the duty cycle ($ff$) and short-circuit current ($I_{sc}$) of the solar cells at the initial and final time points of the tests is established.
Keywords:
polycrystalline solar cells, tests, degradation models, renewable energy sources.
@article{PFMT_2020_1_a8,
author = {V. V. Khoroshko and V. F. Gremenok and E. N. Shneiderov and A. S. Tereshkova and O. A. Aksenov and N. M. Bruj},
title = {Polycrystalline solar cells electrical characteristics forecasting based on their degradation models},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {61--64},
year = {2020},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2020_1_a8/}
}
TY - JOUR AU - V. V. Khoroshko AU - V. F. Gremenok AU - E. N. Shneiderov AU - A. S. Tereshkova AU - O. A. Aksenov AU - N. M. Bruj TI - Polycrystalline solar cells electrical characteristics forecasting based on their degradation models JO - Problemy fiziki, matematiki i tehniki PY - 2020 SP - 61 EP - 64 IS - 1 UR - http://geodesic.mathdoc.fr/item/PFMT_2020_1_a8/ LA - ru ID - PFMT_2020_1_a8 ER -
%0 Journal Article %A V. V. Khoroshko %A V. F. Gremenok %A E. N. Shneiderov %A A. S. Tereshkova %A O. A. Aksenov %A N. M. Bruj %T Polycrystalline solar cells electrical characteristics forecasting based on their degradation models %J Problemy fiziki, matematiki i tehniki %D 2020 %P 61-64 %N 1 %U http://geodesic.mathdoc.fr/item/PFMT_2020_1_a8/ %G ru %F PFMT_2020_1_a8
V. V. Khoroshko; V. F. Gremenok; E. N. Shneiderov; A. S. Tereshkova; O. A. Aksenov; N. M. Bruj. Polycrystalline solar cells electrical characteristics forecasting based on their degradation models. Problemy fiziki, matematiki i tehniki, no. 1 (2020), pp. 61-64. http://geodesic.mathdoc.fr/item/PFMT_2020_1_a8/
[1] D. Jordan, S. Kurtz, “Photovoltaic Degradation Rates — An Analytical Review”, Progress in Photovoltaics: Research and Applications, 21:1, January (2013), 12–29 | DOI
[2] V.F. Greemenok, M.S. Tivanov, V.B. Zalecskii, Solnechnye elementy na osnove poluprovodnikovykh materialov, Izd. Tsentr BGU, Minsk, 2007, 222 pp.
[3] J. Käsewieter, F. Haase, M.H. Larrodé, M. Köntges, “Cracks in Solar Cell Metallization Leading to Module Power Loss under Mechanical Loads”, Energy Procedia, 55 (2014), 469–477 | DOI
[4] E. Connell, A. Semichaevsky, “Degradation of polycrystalline Si solar cell efficiency with increased incident optical power — Experiments and theory”, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 2016