Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2020_1_a7, author = {S. S. Miheev and A. B. Sotsky and M. M. Nazarov and L. I. Sotskaya}, title = {Calculation of the waveguide probe for terahertz spectroscopy of a layered medium}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {55--60}, publisher = {mathdoc}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2020_1_a7/} }
TY - JOUR AU - S. S. Miheev AU - A. B. Sotsky AU - M. M. Nazarov AU - L. I. Sotskaya TI - Calculation of the waveguide probe for terahertz spectroscopy of a layered medium JO - Problemy fiziki, matematiki i tehniki PY - 2020 SP - 55 EP - 60 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2020_1_a7/ LA - ru ID - PFMT_2020_1_a7 ER -
%0 Journal Article %A S. S. Miheev %A A. B. Sotsky %A M. M. Nazarov %A L. I. Sotskaya %T Calculation of the waveguide probe for terahertz spectroscopy of a layered medium %J Problemy fiziki, matematiki i tehniki %D 2020 %P 55-60 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2020_1_a7/ %G ru %F PFMT_2020_1_a7
S. S. Miheev; A. B. Sotsky; M. M. Nazarov; L. I. Sotskaya. Calculation of the waveguide probe for terahertz spectroscopy of a layered medium. Problemy fiziki, matematiki i tehniki, no. 1 (2020), pp. 55-60. http://geodesic.mathdoc.fr/item/PFMT_2020_1_a7/
[1] P. Doradla, C. Joseph, R. Giles, “Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives”, World J. Gastrointest Endosc., 9:8 (2017), 346–358 | DOI
[2] O.A. Smolyanskaya et al., “Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids”, Prog Quant Electron., 62 (2018), 1–77 | DOI
[3] O. Mitrofanov et al., “Reducing transmission losses in hollow THz waveguides”, IEEE Transactions on Terahertz Science and Technology, 1:1 (2011), 124–132 | DOI
[4] M. Navarro-Cía et al., “Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 2.5–5 THz band”, Opt. Express., 21:20 (2013), 23748–23755 | DOI
[5] O. Mitrofanov et al., “Terahertz waveguides with low transmission losses: Characterization and applications”, Proc. of SPIE, 9199, 2014, 91990I, 8 pp. | DOI | MR
[6] K. Ito, T. Katagiri, Y. Matsuura, “Analysis of transmission properties of terahertz hollow-core optical fiber by using time-domain spectroscopy and application for remote spectroscopy”, J. Opt. Soc. Am. B, 34:1 (2017), 60–65 | DOI
[7] A.B. Sotskii, A.V. Shilov, L.I. Sotskaya, “Rasprostranenie teragertsovykh impulsov v kapillyarnykh volnovodakh s metallizirovannoi granitsei”, Kompyuternaya optika, 41:6 (2017), 803–811
[8] M.M. Nazarov et al., “Eight-capillary cladding THz waveguide with low propagation losses and dispersion”, IEEE Transactions on Terahertz Science and Technology, 8:2 (2018), 183–191 | DOI
[9] M. Born, E. Volf, Osnovy optiki, Nauka, M., 1973, 719 pp.
[10] A.B. Sotskii i dr., “Obratnaya zadacha volnovodnoi spektroskopii pri ogranichennoi prizme svyazi”, Izvestiya NAN Belarusi, ser. fiz.-mat. nauk, 2010, no. 3, 66–74
[11] A.B. Sotskii, Teoriya opticheskikh volnovodnykh elementov, UO «MGU im. A.A. Kuleshova», Mogilev, 2011, 456 pp.
[12] A.M. Goncharenko, V.A. Karpenko, Osnovy teorii opticheskikh volnovodov, Nauka i tekhnika, Minsk, 1983, 237 pp.
[13] A. Snaider, Dzh. Lav, Teoriya opticheskikh volnovodov, Radio i svyaz, M., 1987, 656 pp.
[14] S. Yeh, F. Shimabukuro, The essence of dielectric waveguides, Springer, 2008, 522 pp.
[15] N.Q. Vinh, “Dielectric Spectroscopy of proteins as a quantitative experimental test of computational models of their low-frequency harmonic motions”, J. Am. Chem. Soc., 133 (2011), 8942–8947 | DOI
[16] M.M. Nazarov, O.P. Cherkasova, A.P. Shkurinov, “Study of the dielectric function of aqueous solutions of glucose and albumin by THz time-domain spectroscopy”, Quantum Electron., 46:6 (2016), 488–495 | DOI
[17] N.A. Semenov, Tekhnicheskaya elektrodinamika, Svyaz, M., 1972, 478 pp.