Calculation of the waveguide probe for terahertz spectroscopy of a layered medium
Problemy fiziki, matematiki i tehniki, no. 1 (2020), pp. 55-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the Kirchhoff approximation, an analytical solution of the diffraction problem on finding the spectra of the amplitudes of the modes of a waveguide probe at reflection of a terahertz pulse from the open end of a hollow core waveguide contacting with a layered medium, is obtained. On example of the electrodynamic model of the skin as two layers of an aqueous albumin solution excited by the modes of a hollow metal waveguide, the effect of epidermal humidity on the spectra of amplitudes of reflected waveguide modes, which can be measured using the time domain spectroscopy, is studied. It is established that the optimal choice of the frequency range refers to single-mode regime of the waveguide work.
Keywords: hollow-core waveguide, waveguide probe, terahertz time domain spectroscopy, layered medium, biologic sensor.
@article{PFMT_2020_1_a7,
     author = {S. S. Miheev and A. B. Sotsky and M. M. Nazarov and L. I. Sotskaya},
     title = {Calculation of the waveguide probe for terahertz spectroscopy of a layered medium},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {55--60},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2020_1_a7/}
}
TY  - JOUR
AU  - S. S. Miheev
AU  - A. B. Sotsky
AU  - M. M. Nazarov
AU  - L. I. Sotskaya
TI  - Calculation of the waveguide probe for terahertz spectroscopy of a layered medium
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2020
SP  - 55
EP  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2020_1_a7/
LA  - ru
ID  - PFMT_2020_1_a7
ER  - 
%0 Journal Article
%A S. S. Miheev
%A A. B. Sotsky
%A M. M. Nazarov
%A L. I. Sotskaya
%T Calculation of the waveguide probe for terahertz spectroscopy of a layered medium
%J Problemy fiziki, matematiki i tehniki
%D 2020
%P 55-60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2020_1_a7/
%G ru
%F PFMT_2020_1_a7
S. S. Miheev; A. B. Sotsky; M. M. Nazarov; L. I. Sotskaya. Calculation of the waveguide probe for terahertz spectroscopy of a layered medium. Problemy fiziki, matematiki i tehniki, no. 1 (2020), pp. 55-60. http://geodesic.mathdoc.fr/item/PFMT_2020_1_a7/

[1] P. Doradla, C. Joseph, R. Giles, “Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives”, World J. Gastrointest Endosc., 9:8 (2017), 346–358 | DOI

[2] O.A. Smolyanskaya et al., “Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids”, Prog Quant Electron., 62 (2018), 1–77 | DOI

[3] O. Mitrofanov et al., “Reducing transmission losses in hollow THz waveguides”, IEEE Transactions on Terahertz Science and Technology, 1:1 (2011), 124–132 | DOI

[4] M. Navarro-Cía et al., “Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 2.5–5 THz band”, Opt. Express., 21:20 (2013), 23748–23755 | DOI

[5] O. Mitrofanov et al., “Terahertz waveguides with low transmission losses: Characterization and applications”, Proc. of SPIE, 9199, 2014, 91990I, 8 pp. | DOI | MR

[6] K. Ito, T. Katagiri, Y. Matsuura, “Analysis of transmission properties of terahertz hollow-core optical fiber by using time-domain spectroscopy and application for remote spectroscopy”, J. Opt. Soc. Am. B, 34:1 (2017), 60–65 | DOI

[7] A.B. Sotskii, A.V. Shilov, L.I. Sotskaya, “Rasprostranenie teragertsovykh impulsov v kapillyarnykh volnovodakh s metallizirovannoi granitsei”, Kompyuternaya optika, 41:6 (2017), 803–811

[8] M.M. Nazarov et al., “Eight-capillary cladding THz waveguide with low propagation losses and dispersion”, IEEE Transactions on Terahertz Science and Technology, 8:2 (2018), 183–191 | DOI

[9] M. Born, E. Volf, Osnovy optiki, Nauka, M., 1973, 719 pp.

[10] A.B. Sotskii i dr., “Obratnaya zadacha volnovodnoi spektroskopii pri ogranichennoi prizme svyazi”, Izvestiya NAN Belarusi, ser. fiz.-mat. nauk, 2010, no. 3, 66–74

[11] A.B. Sotskii, Teoriya opticheskikh volnovodnykh elementov, UO «MGU im. A.A. Kuleshova», Mogilev, 2011, 456 pp.

[12] A.M. Goncharenko, V.A. Karpenko, Osnovy teorii opticheskikh volnovodov, Nauka i tekhnika, Minsk, 1983, 237 pp.

[13] A. Snaider, Dzh. Lav, Teoriya opticheskikh volnovodov, Radio i svyaz, M., 1987, 656 pp.

[14] S. Yeh, F. Shimabukuro, The essence of dielectric waveguides, Springer, 2008, 522 pp.

[15] N.Q. Vinh, “Dielectric Spectroscopy of proteins as a quantitative experimental test of computational models of their low-frequency harmonic motions”, J. Am. Chem. Soc., 133 (2011), 8942–8947 | DOI

[16] M.M. Nazarov, O.P. Cherkasova, A.P. Shkurinov, “Study of the dielectric function of aqueous solutions of glucose and albumin by THz time-domain spectroscopy”, Quantum Electron., 46:6 (2016), 488–495 | DOI

[17] N.A. Semenov, Tekhnicheskaya elektrodinamika, Svyaz, M., 1972, 478 pp.