On the manifestation of the cosmological curvature of space in a model of a neutral fermion with three mass parameters
Problemy fiziki, matematiki i tehniki, no. 1 (2020), pp. 18-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work a generalized fermion model with spin $1/2$, which is characterized by three physical mass parameters $M_i$ are studied. The additional interaction is determined by the tensor of the external electromagnetic field and the scalar space-time curvature. It joints three bispinors into one physical system. The model also remains valid for neutral Majorana fermions. The coupling of three bispinors into a single system is ensured by the nonzero scalar curvature of the space-time. We study a model situation where it can be assumed that locally the use of Cartesian coordinates is permissible, and the external geometric background can be effectively taken into account by a constant Ricci curvature $R$. For simplicity, we restrict ourselves to the one-dimensional case $(t, x)$. Using the diagonalization of the mixing matrix in a complex system of equations, we reduce the problem to three separate Dirac-type equations with new effective masses $\overline{M}_i$, the values of which are determined numerically depending on the internal parameter of the model and the space-time curvature. A numerical analysis of the necessary diagonalizing transformations $S$ and $S^{-1}$ is given. The solutions of three separate equations of the Majorana type are constructed in the momentum-helicity basis. Using the expression for the transformation matrices $S$ and $S^{-1}$, these solutions are decomposed into linear combinations by solutions with physical masses and vice versa.
Keywords: fermion with three mass parameters, of space-time scalar curvature
Mots-clés : Majorana particle, Dirac equation.
@article{PFMT_2020_1_a2,
     author = {Ya. A. Voynova and E. M. Ovsiyuk},
     title = {On the manifestation of the cosmological curvature of space in a model of a neutral fermion with three mass parameters},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {18--28},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2020_1_a2/}
}
TY  - JOUR
AU  - Ya. A. Voynova
AU  - E. M. Ovsiyuk
TI  - On the manifestation of the cosmological curvature of space in a model of a neutral fermion with three mass parameters
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2020
SP  - 18
EP  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2020_1_a2/
LA  - ru
ID  - PFMT_2020_1_a2
ER  - 
%0 Journal Article
%A Ya. A. Voynova
%A E. M. Ovsiyuk
%T On the manifestation of the cosmological curvature of space in a model of a neutral fermion with three mass parameters
%J Problemy fiziki, matematiki i tehniki
%D 2020
%P 18-28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2020_1_a2/
%G ru
%F PFMT_2020_1_a2
Ya. A. Voynova; E. M. Ovsiyuk. On the manifestation of the cosmological curvature of space in a model of a neutral fermion with three mass parameters. Problemy fiziki, matematiki i tehniki, no. 1 (2020), pp. 18-28. http://geodesic.mathdoc.fr/item/PFMT_2020_1_a2/

[1] V.L. Ginzburg, Ya.A. Smorodinskii, “O volnovykh uravneniyakh chastits s peremennym spinom”, ZhETF, 13 (1943), 274 | Zbl

[2] V.L. Ginzburg, “K teorii vozbuzhdennykh spinovykh sostoyanii elementarnykh chastits”, ZhETF, 13:1–2 (1943), 33–58

[3] A.C. Davydov, “Volnovoe uravnenie chastitsy, imeyuschei spin 3/2, v otsutstvii polya”, ZhETF, 13:9–10 (1943), 313–319

[4] H.J. Bhabha, Harish-Chandra, “On the theory of point particles”, Proc. Roy. Soc. London A, 183 (1944), 134–141 | DOI | MR

[5] H.J. Bhabha, “Relativistic wave equations for the proton”, Proc. Indian Acad. Sci. A, 21 (1945), 241–264 | DOI | MR | Zbl

[6] H.J. Bhabha, “Relativistic wave equations for elementary particles”, Rev. Mod. Phys., 17:2–3 (1945), 200–215 | DOI | MR

[7] H.J. Bhabha, “The theory of the elementary particles”, Rep. Progr. Phys., 10 (1946), 253–271 | DOI

[8] Harish-Chandra, “On the equations of motion of point particles”, Proc. Roy. Soc. London A, 185 (1946), 269–287 | DOI | MR | Zbl

[9] Harish-Chandra, “Relativistic equations for elementary particles”, Proc. Roy. Soc. London A, 192 (1948), 195–218 | DOI | MR | Zbl

[10] I.M. Gelfand, A.M. Yaglom, “Obschie relyativistski invariantnye uravneniya i beskonechnomernye predstavleniya gruppy Lorentsa”, ZhETF, 18:8 (1948), 703–733

[11] I.M. Gelfand, A.M. Yaglom, “Teorema Pauli dlya obschikh relyativistski invariantnykh uravnenii”, ZhETF, 18:12 (1948), 1096–1104

[12] I.M. Gelfand, A.M. Yaglom, “Zaryadnaya sopryazhennost dlya obschikh relyativistski invariantnykh uravnenii”, ZhETF, 18:12 (1948), 1105–1111

[13] H.J. Bhabha, “Theory of elementary particles-fields”, Lectures Delivered at 2nd Summer Seminar Canadian Math. Congress (University of British Columbia, 1949), 1–103

[14] F.I. Fedorov, “K voprosu o reshenii relyativistskikh volnovykh uravnenii”, Doklady AN SSSR, 65:6 (1949), 813–814 | Zbl

[15] E.S. Fradkin, “K teorii chastits s vysshimi spinami”, ZhETF, 20:1 (1950), 27–38

[16] F.I. Fedorov, “O minimalnykh polinomakh matrits relyativistskikh volnovykh uravnenii”, Doklady AN SSSR, 79:5 (1951), 787–790 | Zbl

[17] F.I. Fedorov, “K teorii chastitsy so spinom 2”, Uchenye zapiski BGU, 1951, no. 12, 156–173

[18] H.J. Bhabha, “An equation for a particle with two mass states and positive charge density”, Phil. Mag. Ser. VII, 43 (1952), 33–47 | DOI | MR | Zbl

[19] F.I. Fedorov, “Obobschennye relyativistskie volnovye uravneniya”, Doklady AN SSSR, 82:1 (1952), 37–40 | Zbl

[20] M. Petras, “A contribution of the theory of the Pauli-Fierz's equations a particle with spin 3/2”, Czech. J. Phys., 5:2 (1955), 169–170 | DOI | MR

[21] M. Petras, “A note to Bhabha's equation for a particle with maximum spin 3/2”, Czech. J. Phys., 5:3 (1955), 418–419 | DOI | MR

[22] V.Ya. Fainberg, “K teorii vzaimodeistviya chastits s vysshimi spinami s elektromagnitnym i mezonnym polyami”, Trudy FIAN, 6 (1955), 269–332

[23] V.L. Ginzburg, “On relativistic wave equations with a mass spectrum”, Acta Phys. Pol., 15 (1956), 163–175 | MR | Zbl

[24] H. Shimazu, “A relativistic wave equation for a particle with two mass states of spin 1 and 0”, Progress of Theoretical Physics, 16:4 (1956), 285–298 | DOI | MR

[25] T. Regge, “On properties of the particle with spin 2”, Nuovo Cimento, 5:2 (1957), 325–326 | DOI | MR

[26] P.G. Bergmann, A.I. Janis, “Subsidiary conditions in covariant theories”, Phys. Rev., 111:4 (1958), 1191–1200 | DOI | MR | Zbl

[27] H.A. Buchdahl, “On the compatibility of relativistic wave equations for particles of higher spin in the presence of a gravitational field”, Nuovo Cim., 10 (1958), 96–103 | DOI | MR | Zbl

[28] L.A. Shelepin, “Covariant theory of relativictic wave equations”, Nucl. Phys., 33:4 (1962), 580–593 | DOI | MR | Zbl

[29] A.Z. Capri, “First order wave equations for multi-mass fermions”, Nuovo Cim. B, 64:1 (1969), 151–158 | DOI

[30] A. Aurilia, H. Umezawa, “Theory of high spin fields”, Phys. Rev., 182:5 (1969), 1682–1694 | DOI | MR | Zbl

[31] F.I. Fedorov, B.A. Pletyukhov, “Volnovye uravneniya s kratnymi predstavleniyami gruppy Lorentsa. Tselyi spin”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, 1969, no. 6, 81–86

[32] B.A. Pletyukhov, F.I. Fedorov, “Volnovoe uravnenie s kratnymi predstavleniyami dlya chastitsy so spinom 0”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, 1970, no. 2, 79–85

[33] F.I. Fedorov, B.A. Pletyukhov, “Volnovye uravneniya s kratnymi predstavleniyami gruppy Lorentsa. Polutselyi spin”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, 1970, no. 3, 78–83 | Zbl

[34] B.A. Pletyukhov, F.I. Fedorov, “Volnovoe uravnenie s kratnymi predstavleniyami dlya chastitsy so spinom I”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, 1970, no. 3, 84–92

[35] A. Shamaly, A.Z. Capri, “First-order wave equations for integral spin”, Nuovo Cim. B, 2:2 (1971), 235–253 | DOI | MR

[36] V. Amar, U. Dozzio, “Finite dimensional Gel'fand-Yaglom equations for arbitrary integral spin”, Nuovo Cim. B, 9 (1972), 53–63 | DOI | MR

[37] A.Z. Capri, “Electromagnetic properties of a new spin-1/2 field”, Progr. Theor. Phys., 48:4 (1972), 1364–1374 | DOI

[38] A. Shamaly, A.Z. Capri, “Unified theories for massive spin 1 fields”, Can. J. Phys., 51:14 (1973), 1467–1470 | DOI

[39] M.A.K. Khalil, “Properties of a 20-component spin 1/2 relativistic wave equation”, Phys. Rev. D, 15:6 (1977), 1532–1539 | DOI | MR

[40] A.S. Wightman, “Invariant wave equations: general theory and applications to the external field problem”, Lecture Notes in Physics, 73, 1978, 1–101 | DOI | MR

[41] M.A.K. Khalil, “An equivalence of relativistic field equations”, Nuovo Cimento A, 45:3 (1978), 389–404 | DOI | MR

[42] L. Garding, “Mathematics of invariant wave equations”, Lect. Notes in Physics, 73, 1978, 102–164 | DOI | MR

[43] J.P. Gazeau, “L'equation de Dirac avec masse et spin arbitrares: une construction simple et naturelle”, J. Phys. G. Nucl. Phys., 6:12 (1980), 1459–1475 | DOI

[44] W. Cox, “Higher-rank representations for zero-spin filds theories”, J. Phys. A, 15 (1982), 627–635 | DOI | MR

[45] W. Cox, “First-order formulation of massive spin-2 field theories”, J. Phys. A, 15 (1982), 253–268 | DOI | MR

[46] P.M. Mathews, B. Vijayalakshmi, M. Sivakuma, “On the admissible Lorentz group representations in unique-mass, unique-spin relativistic wave equations”, Phys. A, 15:11 (1982), 1579–1582 | MR

[47] P.M. Mathews, B. Vijayalakshmi, “On inequivalent classes unique-mass-spin relativistic wave equations involving repeated irreducible representations with arbitrary multiplicities”, J. Math. Phys., 25:4 (1984), 1080–1087 | DOI | MR

[48] W. Cox, “On the Lagrangian and Hamiltonian constraint algorithms for the Rarita-Schwinger field coupled to an external electromagnetic field”, J. Phys. A, 22:10 (1989), 1599–1608 | DOI | MR | Zbl

[49] S. Deser, A. Waldron, “Inconsistencies of massive charged gravitating higher spins”, Nucl. Phys. B, 631 (2002), 369–387 | DOI | MR | Zbl

[50] V. Simulik, “Relativistic wave equations of arbitrary spin in quantum mechanics and field theory, example spin $S = 2$”, J. of Phys. Conference Series, 804:1 (2017), 012040 | DOI

[51] E.M. Ovsiyuk, V.V. Kisel, Y.A. Voynova, O.V. Veko, V.M. Red'kov, “Spin 1/2 particle with anomalous magnetic moment in a uniform magnetic field, exact solutions”, Nonlinear Phenomena in Complex Systems, 19:2 (2016), 153–165 | MR | Zbl

[52] V. Kisel, Ya. Voynova, E. Ovsiyuk, V. Balan, V. Red'kov, “Spin 1 Particle with Anomalous Magnetic Moment in the External Uniform Magnetic Field”, Nonlinear Phenomena in Complex Systems, 20:1 (2017), 21–39 | MR | Zbl

[53] E.M. Ovsiyuk, Ya.A. Voynova, V.V. Kisel, V. Balan, V.M. Red'kov, “Spin 1 Particle with Anomalous Magnetic Moment in the External Uniform Electric Field”, Quaternions: Theory and Applications, Chapter 4, ed. Sandra Griffin, Nova Science Publishers, New York, 2017, 47–84 | MR

[54] E.M. Ovsiyuk, Ya.A. Voynova, V.V. Kisel, V. Balan, V.M. Red'kov, “Techniques of projective operators used to construct solutions for a spin 1 particle with anomalous magnetic moment in the external magnetic field”, Quaternions: Theory and Applications, Chapter 3, ed. Sandra Griffin, Nova Science Publishers, New York, 2017, 11–46 | MR

[55] V.V. Kisel, E.M. Ovsiyuk, Ya.A. Voinova, V.M. Redkov, “Kvantovaya mekhanika chastitsy so spinom 1 i kvadrupolnym momentom vo vneshnem odnorodnom magnitnom pole”, Problemy fiziki, matematiki i tekhniki, 2017, no. 3 (32), 18–27

[56] V.V. Kisel, V.A. Pletyukhov, V.V. Gilewsky, E.M. Ovsiyuk, O.V. Veko, V.M. Red'kov, “Spin 1/2 particle with two mass states: interaction with external fields”, Nonlinear Phenomena in Complex Systems, 20:4 (2017), 404–423 | MR | Zbl

[57] E.M. Ovsiyuk, O.V. Veko, Ya.A. Voynova, V.V. Kisel, V. Balan, V.M. Red'kov, “Spin 1/2 particle with two masses in magnetic field”, Applied Sciences, 20 (2018), 148–166 | MR | Zbl

[58] E.M. Ovsiyuk, O.V. Veko, Ya.A. Voynova, V.M. Red'kov, V.V. Kisel, N.V. Samsonenko, “Spin 1/2 particle with two masses in external magnetic field”, J. Mech. Cont. and Math. Sci., 2019, no. 1, Special Issue, 651–660 | MR

[59] I.M. Gelfand, R.A. Minlos, Z.Ya. Shapiro, Predstavleniya gruppy vraschenii i gruppy Lorentsa, ikh primeneniya, Nauka, M., 1958, 367 pp.

[60] V.V. Kisel, E.M. Ovsiyuk, O.V. Veko, Y.A. Voynova, V. Balan, V.M. Red'kov, Elementary Particles with Internal Structure in External Fields, v. I, General Theory, Nova Science Publishers Inc., New York, 2018, 404 pp.

[61] V.V. Kisel, E.M. Ovsiyuk, O.V. Veko, Y.A. Voynova, V. Balan, V.M. Red'kov, Elementary Particles with Internal Structure in External Fields, v. II, Physical Problems, Nova Science Publishers Inc., New York, 2018, 402 pp.

[62] V.V. Kisel, V.A. Pletyukhov, E.M. Ovsiyuk, Ya.A. Voinova, O.V. Veko, V.M. Redkov, “Fermion s tremya massovymi parametrami: vzaimodeistvie s vneshnimi polyami”, Doklady NAN Belarusi, 62:6 (2018), 661–667