Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2020_1_a1, author = {N. Villa and D. A. Golosov and S. N. Melnikov and T. D. Nguyen and A. D. Golosov and E. E. Litvin and N. N. Lam}, title = {Formation of tantalum oxide films on substrates with a diameter of 200 mm}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {12--17}, publisher = {mathdoc}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2020_1_a1/} }
TY - JOUR AU - N. Villa AU - D. A. Golosov AU - S. N. Melnikov AU - T. D. Nguyen AU - A. D. Golosov AU - E. E. Litvin AU - N. N. Lam TI - Formation of tantalum oxide films on substrates with a diameter of 200 mm JO - Problemy fiziki, matematiki i tehniki PY - 2020 SP - 12 EP - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2020_1_a1/ LA - ru ID - PFMT_2020_1_a1 ER -
%0 Journal Article %A N. Villa %A D. A. Golosov %A S. N. Melnikov %A T. D. Nguyen %A A. D. Golosov %A E. E. Litvin %A N. N. Lam %T Formation of tantalum oxide films on substrates with a diameter of 200 mm %J Problemy fiziki, matematiki i tehniki %D 2020 %P 12-17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2020_1_a1/ %G ru %F PFMT_2020_1_a1
N. Villa; D. A. Golosov; S. N. Melnikov; T. D. Nguyen; A. D. Golosov; E. E. Litvin; N. N. Lam. Formation of tantalum oxide films on substrates with a diameter of 200 mm. Problemy fiziki, matematiki i tehniki, no. 1 (2020), pp. 12-17. http://geodesic.mathdoc.fr/item/PFMT_2020_1_a1/
[1] J. Robertson, R.M. Wallace, “High-K materials and metal gates for CMOS applications”, Materials Science and Engineering R, 88 (2015), 1–41 | DOI
[2] S. Hall et al., “Review and perspective of high-k dielectrics on silicon”, J. of Telecomunications and Information Technology, 2 (2007), 33–43
[3] R. Hollerweger et al., “Magnetic field strength influence on the reactive magnetron sputter deposition of Ta$_2$O$_5$”, J. Phys. D: Appl. Phys., 46 (2013), 1–7 | DOI
[4] C.D. Tsiogas, J.N. Avaritsiotis, “Modeling reactive sputtering process in symmetrical planar direct current magnetron systems”, J. Appl. Phys., 71:10 (1992), 5173–5182 | DOI
[5] J. Musil et al., “Reactive magnetron sputtering of thin films: present status and trends”, Thin Solid Films, 475 (2005), 208–218 | DOI
[6] A.P. Dostanko i dr., “Formirovanie plenok nitrida titana metodom reaktivnogo magnetronnogo raspyleniya pri ponizhennom davlenii”, Problemy fiziki, matematiki i tekhniki, 2016, no. 2 (27), 12–17
[7] S.R. How et al., “Plasma diagnostic by optical emission spectroscopy on reactive magnetron sputtering plasma A Brief Introduction”, Journal of Physics Conference Series, 1027 (2018), 12005 | DOI
[8] A.P. Dostanko i dr., Innovatsionnye tekhnologii i oborudovanie submikronnoi elektroniki, ed. A.P. Dostanko, Belaruskaya navuka, Minsk, 2020, 260 pp.
[9] D.A. Golosov i dr., “Dielektricheskie kharakteristiki plenok oksida gafniya”, Rossiiskie nanotekhnologii, 2:9–10 (2017), 63–68 | Zbl
[10] N. Vilya, D.A. Golosov, T.D. Nguen, “Formirovanie plenok oksida titana metodom reaktivnogo magnetronnogo raspyleniya”, Doklady BGUIR, 2019, no. 5 (123), 87–93
[11] N. Vilya i dr., “Formirovanie plenok oksida tsirkoniya metodom reaktivnogo magnetronnogo raspyleniya”, Vzaimodeistvie izluchenii s tverdym telom, Materialy 12-i Mezhdunar. konf. (Minsk 19–22 sent. 2017 g.), eds. V.V. Uglov i dr., Belorusskii gos. un-t, Minsk, 2017, 438–440