On finite groups with modular Schmidt subgroup
Problemy fiziki, matematiki i tehniki, no. 4 (2019), pp. 36-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. Then $G$ is called a Schmidt group if $G$ is not nilpotent but every proper subgroup of $G$ is nilpotent. A subgroup $M$ of $G$ is called modular in $G$ if $M$ is a modular element (in the sense of Kurosh) of the lattice $L(G)$ of all subgroups of $G$, that is, (i) $\langle X, M\cap Z \rangle=\langle X, M\rangle\cap Z$ for all $X\leqslant G$, $Z\leqslant G$ such that $X\leqslant Z$, and (ii) $\langle M, Y\cap Z \rangle=\langle M, Y\rangle\cap Z$ for all $Y\leqslant G$, $Z\leqslant G$ such that $M\leqslant G$. In this paper, we prove that if every Schmidt subgroup $A$ of $G$ with $A\leqslant G'$ is modular in $G$, then $G$ is soluble, and if every Schmidt subgroup of $G$ is modular in $G$, then the derived subgroup $G'$ is nilpotent.
Keywords: finite group, modular subgroup, Schmidt group, derived subgroup, nilpotent group.
@article{PFMT_2019_4_a6,
     author = {I. V. Bliznets and V. M. Selkin},
     title = {On finite groups with modular {Schmidt} subgroup},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {36--38},
     publisher = {mathdoc},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_4_a6/}
}
TY  - JOUR
AU  - I. V. Bliznets
AU  - V. M. Selkin
TI  - On finite groups with modular Schmidt subgroup
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 36
EP  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_4_a6/
LA  - en
ID  - PFMT_2019_4_a6
ER  - 
%0 Journal Article
%A I. V. Bliznets
%A V. M. Selkin
%T On finite groups with modular Schmidt subgroup
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 36-38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_4_a6/
%G en
%F PFMT_2019_4_a6
I. V. Bliznets; V. M. Selkin. On finite groups with modular Schmidt subgroup. Problemy fiziki, matematiki i tehniki, no. 4 (2019), pp. 36-38. http://geodesic.mathdoc.fr/item/PFMT_2019_4_a6/

[1] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin, 1994 | MR | Zbl

[2] R. Schmidt, “Endliche Gruppen mit vilen modularen Untergruppen”, Abhan. Math. Sem. Univ. Hamburg, 34 (1970), 115–125 | DOI | MR

[3] K.A. Reshko, V.I. Kharlamova, “On $p$-length arbitrary finite group”, Matem. Zametki, 14:3 (1973), 419–427 | MR

[4] I. Zimmermann, “Submodular subgroups in finite Groups”, Math. Z., 202 (1989), 545–557 | DOI | MR | Zbl

[5] V.A. Vasilyev, A.N. Skiba, “On one generalization of modular subgroups”, Ukrainian Math. J., 63:10 (2012), 1494–1505 | DOI | MR

[6] V.A. Vasilyev, “Finite groups with submodular Sylow subgroups”, Siberian Math. J., 56:6 (2015), 1019–1027 | DOI | MR | Zbl

[7] J. Huang, B. Hu, X. Zheng, “Finite groups whose $n$-maximal subgroups are modular”, Siberian Math. J., 59:3 (2018), 556–564 | DOI | MR | Zbl

[8] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[9] V.N. Semenchuk, “Finite groups with a system of minimal non-$\mathfrak{F}$-groups”, Subgroup structure of finite groups, Nauka i tehnika, Minsk, 1981 | MR

[10] V.S. Monakhov, V.N. Knyagina, “On finite groups with some subnormal Schmidt subgroups”, Siberian Math. Zh., 45:6 (2004), 1316–1322 | MR | Zbl

[11] A. Khaled, A. Al-Sharo, A.N. Skiba, “On finite groups with $\sigma$-subnormal Schmidt subgroups”, Comm. Algebra, 45 (2017), 4158–4165 | DOI | MR | Zbl

[12] V.A. Vedernikov, “Finite groups with subnormal Schmidt subgroups”, Algebra and Logica, 46:6 (2007), 669–687 | MR | Zbl

[13] A.N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[14] A.N. Skiba, “Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups”, J. Algebra, 495:1 (2018), 114–129 | DOI | MR | Zbl

[15] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[16] L.A. Shemetkov, Formations of finite groups, Nauka, Main Editorial Board for Physical and Mathematical Literature, M., 1978 | MR | Zbl