On finite groups with modular Schmidt subgroup
Problemy fiziki, matematiki i tehniki, no. 4 (2019), pp. 36-38

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. Then $G$ is called a Schmidt group if $G$ is not nilpotent but every proper subgroup of $G$ is nilpotent. A subgroup $M$ of $G$ is called modular in $G$ if $M$ is a modular element (in the sense of Kurosh) of the lattice $L(G)$ of all subgroups of $G$, that is, (i) $\langle X, M\cap Z \rangle=\langle X, M\rangle\cap Z$ for all $X\leqslant G$, $Z\leqslant G$ such that $X\leqslant Z$, and (ii) $\langle M, Y\cap Z \rangle=\langle M, Y\rangle\cap Z$ for all $Y\leqslant G$, $Z\leqslant G$ such that $M\leqslant G$. In this paper, we prove that if every Schmidt subgroup $A$ of $G$ with $A\leqslant G'$ is modular in $G$, then $G$ is soluble, and if every Schmidt subgroup of $G$ is modular in $G$, then the derived subgroup $G'$ is nilpotent.
Keywords: finite group, modular subgroup, Schmidt group, derived subgroup, nilpotent group.
@article{PFMT_2019_4_a6,
     author = {I. V. Bliznets and V. M. Selkin},
     title = {On finite groups with modular {Schmidt} subgroup},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {36--38},
     publisher = {mathdoc},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_4_a6/}
}
TY  - JOUR
AU  - I. V. Bliznets
AU  - V. M. Selkin
TI  - On finite groups with modular Schmidt subgroup
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 36
EP  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_4_a6/
LA  - en
ID  - PFMT_2019_4_a6
ER  - 
%0 Journal Article
%A I. V. Bliznets
%A V. M. Selkin
%T On finite groups with modular Schmidt subgroup
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 36-38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_4_a6/
%G en
%F PFMT_2019_4_a6
I. V. Bliznets; V. M. Selkin. On finite groups with modular Schmidt subgroup. Problemy fiziki, matematiki i tehniki, no. 4 (2019), pp. 36-38. http://geodesic.mathdoc.fr/item/PFMT_2019_4_a6/