On the reduced semi-empirical equations of state of the form $\tilde{V}=\tilde{V}(\tilde{P},\tilde{T})$
Problemy fiziki, matematiki i tehniki, no. 4 (2019), pp. 28-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of the thermodynamic approach to the study of macrosystems using the Cardano method, three two-parameter equations of state are considered. Basing on the given forms of the form $\tilde{P}=\tilde{P}(\tilde{V},\tilde{T})$ of the Redlich–Kwong, Berthelot and Van der Waals equations of state, the explicit forms of their functional representations of the form $\tilde{V}=\tilde{V}(\tilde{P},\tilde{T})$ are determined.
Keywords: semi-empirical equation of state, cubicity by volume, Cardano method, reduced variables, representation of the form $\tilde{V}=\tilde{V}(\tilde{P},\tilde{T})$.
@article{PFMT_2019_4_a4,
     author = {A. S. Nevmerzhitskaya and G. Yu. Tyumenkov},
     title = {On the reduced semi-empirical equations of state of the form $\tilde{V}=\tilde{V}(\tilde{P},\tilde{T})$},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {28--30},
     publisher = {mathdoc},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_4_a4/}
}
TY  - JOUR
AU  - A. S. Nevmerzhitskaya
AU  - G. Yu. Tyumenkov
TI  - On the reduced semi-empirical equations of state of the form $\tilde{V}=\tilde{V}(\tilde{P},\tilde{T})$
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 28
EP  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_4_a4/
LA  - ru
ID  - PFMT_2019_4_a4
ER  - 
%0 Journal Article
%A A. S. Nevmerzhitskaya
%A G. Yu. Tyumenkov
%T On the reduced semi-empirical equations of state of the form $\tilde{V}=\tilde{V}(\tilde{P},\tilde{T})$
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 28-30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_4_a4/
%G ru
%F PFMT_2019_4_a4
A. S. Nevmerzhitskaya; G. Yu. Tyumenkov. On the reduced semi-empirical equations of state of the form $\tilde{V}=\tilde{V}(\tilde{P},\tilde{T})$. Problemy fiziki, matematiki i tehniki, no. 4 (2019), pp. 28-30. http://geodesic.mathdoc.fr/item/PFMT_2019_4_a4/

[1] J. Tian, H. Jiang, A. Mulero, “New equations of state for the hard polyhedron fluids”, Phys. Chem. Chem. Phys., 24 (2019), 13109–13115 | DOI

[2] F. Salces-Carcoba, C.J. Billington, A. Putra, Y. Yue, S Sugawa, I.B. Spielman, “Equations of state from individual one-dimentional Bose gases”, New Journal of Physics, 20 (2018), 113032–113044 | DOI

[3] Yu.B. Rumer, M.Sh. Ryvkin, Termodinamika, statisticheskaya fizika i kinetika, Izdatelstvo Novosibirskogo universiteta, Novosibirsk, 2000, 608 pp.

[4] E.A. Dei, O.V. Novikova, G.Yu. Tyumenkov, “Raschet parametrov izoentalpicheskogo okhlazhdeniya gazov Redlikha–Kvonga”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2012, no. 6 (75), 39–42

[5] A.A. Gusak, G.M. Gusak, E.A. Brichikova, Spravochnik po vysshei matematike v dvukh tomakh, Tetrasistems, Minsk, 1999, 640 pp.