Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2019_4_a2, author = {A. V. Kotukhov and N. A. Zharko and V. S. Minchuk and N. V. Dezhkunov}, title = {Cavitation in aqueous solutions of carbon dioxide}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {17--22}, publisher = {mathdoc}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2019_4_a2/} }
TY - JOUR AU - A. V. Kotukhov AU - N. A. Zharko AU - V. S. Minchuk AU - N. V. Dezhkunov TI - Cavitation in aqueous solutions of carbon dioxide JO - Problemy fiziki, matematiki i tehniki PY - 2019 SP - 17 EP - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2019_4_a2/ LA - ru ID - PFMT_2019_4_a2 ER -
A. V. Kotukhov; N. A. Zharko; V. S. Minchuk; N. V. Dezhkunov. Cavitation in aqueous solutions of carbon dioxide. Problemy fiziki, matematiki i tehniki, no. 4 (2019), pp. 17-22. http://geodesic.mathdoc.fr/item/PFMT_2019_4_a2/
[1] M.G. Sirotyuk, Akusticheskaya kavitatsiya, Nauka, M., 2008, 271 pp.
[2] T.G. Leighton, Acoustic Bubble, Pergamon Press, London, 1995, 650 pp.
[3] M.A. Margulis, “Sonolyuminestsentsiya”, Uspekhi fizicheskikh nauk, 2000, no. 3, 263–284 | DOI
[4] Y.T. Didenko, K. Suslick, “Molecular Emission during. Single Bubble Sonoluminescence”, Nature, 407 (2010), 877–879 | DOI
[5] S. Gireesan, A.B. Pandit, “Modeling the effect of carbondioxide gas on cavitation”, Utrasonics Sonochemistry, 34 (2017), 721–728 | DOI
[6] S. Merouani, O. Hamdaoui, Y. Rezgui, M. Guemini, “Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases”, Ultrasonics Sonochemistry, 22 (2015), 41–50 | DOI
[7] N.V. Dezhkunov, “Multibubble sonoluminescence intensity dependence on liquid temperature at different ultrasound intensities”, Ultrasonics Sonochemistry, 9 (2002), 103–106 | DOI
[8] N.V. Dezhkunov, A. Francescutto, F. Calligaris, A.L. Nikolaev, “Evolyutsiya kavitatsionnoi oblasti v fokusirovannom ultrazvukovom pole”, Pisma v zhurnal tekhnicheskoi fiziki, 40:16 (2014), 73–79
[9] P.R. Gogate, S. Shaha, L. Csoka, “Intensification of cavitational activity using gases in different types of sonochemical reactors”, Chem. Eng. J., 262 (2015), 1033–1042 | DOI
[10] A. Znidarcic, R. Mettin, C. Cair, M. Dular, “Attached cavitation at a small diameter ultrasonic horn tip”, Physics of fluids, 26:2 (2014), 023304 | DOI
[11] R. Mettin, M. Dular, A. Znidarcic, V.A. Truong, “Dynamics of attached cavitation at an ultrasonic horn tip”, Fortschritte der Akustik, DAGA, Darmstadt, 2012, 447–448
[12] Laboratory of ultrasonic technologies and equipment, (Date of access: 02.09.2019) https://cavitation.bsuir.by/en/
[13] G.J. Price, M. Ashokkumar, M. Hodnett, B. Zequiri, F. Grieser, “Acoustic emission from cavitating solutions: Implications for the mechanisms of sonochemical reactions”, Journal of Physical Chemistry B, 109:38 (2005), 17799–17801 | DOI
[14] N.V. Dezhkunov, A. Francescutto, L. Serpe, R. Canaparo, G. Cravotto, “Sonoluminescence and acoustic emission spectra at different stages of cavitation zone development”, Ultrasonics Sonochemistry, 40 (2018), 104–109 | DOI
[15] N. Segebarth, O. Eulaerts, J. Reisse, L.A. Crum, T.J. Matula, “Correlation between sonoluminescence, sonochemistry and cavitation noise spectra”, Journal of Physical Chemistry, 2:8–9 (2002), 536–538