On one generalization of $\sigma$-local and Baer-local formations
Problemy fiziki, matematiki i tehniki, no. 4 (2019), pp. 65-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

Throughout this paper, all groups are finite and $G$ is a group. Let $\sigma=\{\sigma_i\mid i\in I\}$ be some partition of the set of all primes $\mathbb{P}$. Then $\sigma(G)=\{\sigma_i\mid \sigma_i\cap\pi(G)\ne\varnothing\}$; $\sigma^+(G)=\{\sigma_i\mid G \text{ has a chief factor } H/K, \text{ such that } \sigma(H/K)=\{\sigma_i\}\}$. The group $G$ is said to be: $\sigma$-primary if $G$ is $\sigma_i$-group for some $i$; $\sigma$-soluble if every chief factor of $G$ is $\sigma$-primary. The symbol $R_\sigma(G)$ denotes the product of all normal $\sigma$-soluble subgroups of $G$. The chief factor $H/K$ of $G$ is said to be: $\sigma$-central (in $G$) if $(H/K)\rtimes(G/C_G(H/K))$ is $\sigma$-primary; a $\sigma_i$-factor if $H/K$ is a $\sigma_i$-group. We say that $G$ is: $\sigma$-nilpotent if every chief factor of $G$ is $\sigma$-central; generalized $\{\sigma_i\}$-nilpotent if every chief $\sigma_i$-factor of $G$ is $\sigma$-central. The symbol $F_{\{g\sigma_i\}}(G)$ denotes the product of all normal generalized $\{\sigma_i\}$-nilpotent subgroups of $G$. We call any function $f$ of the form $f:\sigma\cup\{\varnothing\}\to\{\text{formations of groups}\}$, where $f(\varnothing)\ne\varnothing$, a generalized formation $\sigma$-function and we put $$ BLF_\sigma(f)=(G\mid G/R_\sigma(G)\in f(\varnothing) \text{ and } G/F_{\{g\sigma_i\}}(G)\in f(\sigma_i) \text{ for all }\sigma_i\in\sigma^+(G)). $$ If for some generalized formation $\sigma$-function $f$ we have $\mathfrak{F}=BLF_\sigma(f)$, then we say that the class $\mathfrak{F}$ is Baer-$\sigma$-local and $f$ is a generalized $\sigma$-local definition of $\mathfrak{F}$. In this paper, we describe basic properties, examples, and some applications of Baer-$\sigma$-local formations.
Keywords: finite group, generalized formation $\sigma$-function, Baer-$\sigma$-local formation, generalized $\{\sigma_i\}$-nilpotent group, Gaschütz product.
@article{PFMT_2019_4_a12,
     author = {V. G. Safonov and I. N. Safonova and A. N. Skiba},
     title = {On one generalization of $\sigma$-local and {Baer-local} formations},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {65--69},
     publisher = {mathdoc},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_4_a12/}
}
TY  - JOUR
AU  - V. G. Safonov
AU  - I. N. Safonova
AU  - A. N. Skiba
TI  - On one generalization of $\sigma$-local and Baer-local formations
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 65
EP  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_4_a12/
LA  - en
ID  - PFMT_2019_4_a12
ER  - 
%0 Journal Article
%A V. G. Safonov
%A I. N. Safonova
%A A. N. Skiba
%T On one generalization of $\sigma$-local and Baer-local formations
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 65-69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_4_a12/
%G en
%F PFMT_2019_4_a12
V. G. Safonov; I. N. Safonova; A. N. Skiba. On one generalization of $\sigma$-local and Baer-local formations. Problemy fiziki, matematiki i tehniki, no. 4 (2019), pp. 65-69. http://geodesic.mathdoc.fr/item/PFMT_2019_4_a12/

[1] L.A. Shemetkov, Formations of Finite Groups, Nauka, M., 1978 | MR | Zbl

[2] A.N. Skiba, “Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups”, J. Algebra, 495:1 (2018), 114–129 | DOI | MR | Zbl

[3] A.N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[4] A.N. Skiba, “On one generalization of the local formations”, Problems of Physics, Mathematics and Technics, 2018, no. 1 (34), 79–82 | MR | Zbl

[5] Z. Chi, V.G. Safonov, A.N. Skiba, “On one application of the theory of $n$-multiply $\sigma$-local formations of finite groups”, Problems of Physics, Mathematics and Technics, 2018, no. 2 (35), 85–88 | MR | Zbl

[6] Z. Chi, V.G. Safonov, A.N. Skiba, “On $n$-multiply $\sigma$-local formations of finite groups”, Comm. Algebra, 47:3 (2019), 1–10 | DOI | MR

[7] Z. Chi, A.N. Skiba, “On $\Sigma_t^{\sigma}$-closed classes of finite groups”, Ukranian Math. J., 70:2 (2019), 1707–1716 | MR

[8] Z. Chi, A.N. Skiba, “A generalization of Kramer's theory”, Acta Math. Hungar., 158:1 (2019), 87–99 | DOI | MR

[9] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[10] A. Ballester-Bolinches, L.M. Ezquerro, Classes of Finite Groups, Springer, Dordrecht, 2006 | MR | Zbl

[11] L.A. Shemetkov, A.N. Skiba, Formations of Algebraic Systems, Nauka, M., 1989 | MR | Zbl

[12] V.G. Safonov, I.N Safonova, A.N. Skiba, On Baer-$\sigma$-local formations of finite groups, Preprint, 2019 | MR

[13] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[14] A.N. Skiba, L.A. Shemetkov, “Multiply $\mathfrak{L}$-composition formations of finite groups”, Ukrainian Math. J., 52:6 (2000), 898–913 | DOI | MR | Zbl

[15] A.N. Skiba, “On some results in the theory of finite partially soluble groups”, Commun. Math. Stat., 4:3 (2016), 281–309 | DOI | MR | Zbl

[16] B. Hu, J. Huang, A.N. Skiba, “On the generalized $\sigma$-Fitting subgroup of finite groups”, Rend. Sem. Mat. Univ. Padova, 141 (2019), 19–36 | MR | Zbl

[17] L.A. Shemetkov, “Composition formations and radicals of finite groups”, Ukrainian Math. J., 40:3 (1988), 369–375 | MR