On $p$-supersolubility of one class finite groups
Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 63-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following is proved: A finite group $G$ is $p$-supersoluble if and only if it has a normal subgroup $N$ with $p$-supersoluble quotient $G / N$ such that either $N$ is $p'$-group or $p$ divides $|N|$ and $|G : N_G(L)|$ equals to a power of $p$ for any cyclic $p$-subgroup $L$ of $N$ of order $p$ or order $4$ (if $p = 2$ and a Sylow $2$-subgroup of $N$ is non-abelian).
Keywords: finite group, $p$-nilpotent group, $p$-supersoluble group.
@article{PFMT_2019_3_a9,
     author = {I. M. Dergacheva and E. A. Zadorozhnyuk and I. P. Shabalina},
     title = {On $p$-supersolubility of one class finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {63--66},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_3_a9/}
}
TY  - JOUR
AU  - I. M. Dergacheva
AU  - E. A. Zadorozhnyuk
AU  - I. P. Shabalina
TI  - On $p$-supersolubility of one class finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 63
EP  - 66
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_3_a9/
LA  - en
ID  - PFMT_2019_3_a9
ER  - 
%0 Journal Article
%A I. M. Dergacheva
%A E. A. Zadorozhnyuk
%A I. P. Shabalina
%T On $p$-supersolubility of one class finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 63-66
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_3_a9/
%G en
%F PFMT_2019_3_a9
I. M. Dergacheva; E. A. Zadorozhnyuk; I. P. Shabalina. On $p$-supersolubility of one class finite groups. Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 63-66. http://geodesic.mathdoc.fr/item/PFMT_2019_3_a9/

[1] M. Weinstein, Between Nilpotent and Solvable, Polygonal Publishing House, 1982, 231 pp. | MR | Zbl

[2] Ya.G. Bercovich, L.S. Kazarin, “Indices of elements and normal structure of finite groups”, J. Algebra, 283:1 (2005), 564–583 | DOI | MR

[3] B. Huppert, Endliche Gruppen I, Springer-Verlag, 1967, 808 pp. | MR | Zbl

[4] J. Buckley, “Finite groups whose minimal subgroups are normal”, Math. Z., 15 (1970), 15–17 | DOI | MR | Zbl

[5] L.A. Shemetkov, A.N. Skiba, Formations of algebraic systems, Nauka, Main Editorial Board for Physical and Mathematical Literature, M., 1989, 257 pp. | MR | Zbl

[6] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992, 901 pp. | MR

[7] T.M. Gagen, Topics in Finite Groups, Cambridge University Press, 1976, 85 pp. | MR | Zbl

[8] A.N. Skiba, “A characterization of the hypercyclically embedded subgroups of finite groups”, Journal of Pure and Applied Algebra, 215:3 (2011), 257–261 | DOI | MR | Zbl

[9] D. Gorenstein, Finite Groups, Harper Row Publishers, New York–Evanston–London, 1968, 519 pp. | MR | Zbl