A massive gravitational field in flat spacetime. II. Conservation laws and gravitational variability of the inertial mass
Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 33-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a linear massive spinless field adapted as a gauge-invariant model of gravity in the framework of the special theory of relativity, a canonical energy-momentum tensor is constructed and the laws of conservation of energy and momentum are formulated. It is shown that the general requirement of a positive definiteness of the energy density of any physical reality in the case of an attractive field determines its scalar nature and far-reaching gravitational variability of the inertial mass of matter particles.
Keywords: spinless massive gravity, gravitational energy
Mots-clés : variable mass.
@article{PFMT_2019_3_a4,
     author = {M. A. Serdyukova and A. N. Serdyukov},
     title = {A massive gravitational field in flat spacetime. {II.} {Conservation} laws and gravitational variability of the inertial mass},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {33--39},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_3_a4/}
}
TY  - JOUR
AU  - M. A. Serdyukova
AU  - A. N. Serdyukov
TI  - A massive gravitational field in flat spacetime. II. Conservation laws and gravitational variability of the inertial mass
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 33
EP  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_3_a4/
LA  - en
ID  - PFMT_2019_3_a4
ER  - 
%0 Journal Article
%A M. A. Serdyukova
%A A. N. Serdyukov
%T A massive gravitational field in flat spacetime. II. Conservation laws and gravitational variability of the inertial mass
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 33-39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_3_a4/
%G en
%F PFMT_2019_3_a4
M. A. Serdyukova; A. N. Serdyukov. A massive gravitational field in flat spacetime. II. Conservation laws and gravitational variability of the inertial mass. Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 33-39. http://geodesic.mathdoc.fr/item/PFMT_2019_3_a4/

[1] M.A. Serdyukova, A.N. Serdyukov, “A Massive Gravitational Field in Flat Spacetime. I. Gauge Invariance and Field Equations”, Problems of Physics, Mathematics and Technics, 2019, no. 2 (39), 45–53 | MR

[2] M.A. Serdyukova, “The Law of Energy-Momentum Conservation of Massive Spinzero Gravitational Field”, Problems of Interaction of Radiation with Matter, Proceedings of the V International Scientific Conference Dedicated to Academician B. V. Bokut (Gomel, November 14–16, 2018), v. 1, F. Skorina Gomel State University, Gomel, 2018, 193–199

[3] G. Nordström, “Relativitäts prinzip und Gravitation”, Phys. Z., 13 (1912), 1126–1129 | Zbl

[4] G. Nordström, “Träge und schwere Masse in der Relavitätsmechanik”, Ann. Phys. (Leipzig), 40 (1913), 856–878 | DOI | Zbl

[5] A.N. Serdyukov, “A minimal relativistic model of gravitation within standard restrictions of the classical theory of fields”, Phys. of Part. and Nucl. Lett., 2009, no. 6, 190–201 | DOI

[6] L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, v. 2, The Classical theory of fields, Butterworth-Heinemann, Oxford, 1987, 428 pp. | MR

[7] L. Brillouin, Relativity Reexavined, Academic Press, New York, 1970, 111 pp.

[8] G. 't Hooft, Introduction to General Relativity, Utrecht University, Utrecht, Netherlands, 2012, 71 pp.

[9] H. Weyl, Raum–Zeit–Materie. Vorlesungen uber allgemeine Relativitätstheorie, Springer, Berlin, 1923, 338 pp. | MR | Zbl

[10] R.M. Wald, General Relativity, Univ. Chicago Press, Chicago, 1984, 491 pp. | MR | Zbl

[11] N.V. Mitskevich, The Physical Fields in General Relativity, Nauka, M., 1969, 326 pp.

[12] E.F. Taylor, J.A. Wheeler, Spacetime Physics, 2nd ed., Freeman, New York, 1992, 208 pp.

[13] H. Weyl, Space-Time-Matter, Methuen Co., London, 1922, 495 pp. | Zbl

[14] L.B. Okun', Energy and Mass in Relativity Theory, World Scientific, New Jersey, 2009, 311 pp. | Zbl

[15] L.B. Okun', “Mass versus relativistic and rest masses”, Am. J. Phys., 77:5 (2009), 430–431 | DOI

[16] C. Brans, R.H. Dicke, “Mach's principle and a relativistic theory of gravitation”, Phys. Rev., 124 (1961), 925–935 | DOI | MR | Zbl

[17] V. Fock, The Theory of Space, Time, and Gravitation, Pergamon, London, 1964, 448 pp. | MR

[18] L.B. Okun', K.G. Selivanov, V.L. Telegdi, “Gravitation, photons, clocks”, Physics-Uspekhi, 42:10 (1999), 1045–1050 | DOI

[19] N. Straumann, General Relativity and Relativistic Astrophysics, Springer, Berlin, 1984, 459 pp. | MR

[20] N. Straumann, General Relativity With Applications to Astrophysics, Springer, Berlin, 2004, 674 pp. | MR | Zbl