Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2019_3_a4, author = {M. A. Serdyukova and A. N. Serdyukov}, title = {A massive gravitational field in flat spacetime. {II.} {Conservation} laws and gravitational variability of the inertial mass}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {33--39}, publisher = {mathdoc}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PFMT_2019_3_a4/} }
TY - JOUR AU - M. A. Serdyukova AU - A. N. Serdyukov TI - A massive gravitational field in flat spacetime. II. Conservation laws and gravitational variability of the inertial mass JO - Problemy fiziki, matematiki i tehniki PY - 2019 SP - 33 EP - 39 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2019_3_a4/ LA - en ID - PFMT_2019_3_a4 ER -
%0 Journal Article %A M. A. Serdyukova %A A. N. Serdyukov %T A massive gravitational field in flat spacetime. II. Conservation laws and gravitational variability of the inertial mass %J Problemy fiziki, matematiki i tehniki %D 2019 %P 33-39 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2019_3_a4/ %G en %F PFMT_2019_3_a4
M. A. Serdyukova; A. N. Serdyukov. A massive gravitational field in flat spacetime. II. Conservation laws and gravitational variability of the inertial mass. Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 33-39. http://geodesic.mathdoc.fr/item/PFMT_2019_3_a4/
[1] M.A. Serdyukova, A.N. Serdyukov, “A Massive Gravitational Field in Flat Spacetime. I. Gauge Invariance and Field Equations”, Problems of Physics, Mathematics and Technics, 2019, no. 2 (39), 45–53 | MR
[2] M.A. Serdyukova, “The Law of Energy-Momentum Conservation of Massive Spinzero Gravitational Field”, Problems of Interaction of Radiation with Matter, Proceedings of the V International Scientific Conference Dedicated to Academician B. V. Bokut (Gomel, November 14–16, 2018), v. 1, F. Skorina Gomel State University, Gomel, 2018, 193–199
[3] G. Nordström, “Relativitäts prinzip und Gravitation”, Phys. Z., 13 (1912), 1126–1129 | Zbl
[4] G. Nordström, “Träge und schwere Masse in der Relavitätsmechanik”, Ann. Phys. (Leipzig), 40 (1913), 856–878 | DOI | Zbl
[5] A.N. Serdyukov, “A minimal relativistic model of gravitation within standard restrictions of the classical theory of fields”, Phys. of Part. and Nucl. Lett., 2009, no. 6, 190–201 | DOI
[6] L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, v. 2, The Classical theory of fields, Butterworth-Heinemann, Oxford, 1987, 428 pp. | MR
[7] L. Brillouin, Relativity Reexavined, Academic Press, New York, 1970, 111 pp.
[8] G. 't Hooft, Introduction to General Relativity, Utrecht University, Utrecht, Netherlands, 2012, 71 pp.
[9] H. Weyl, Raum–Zeit–Materie. Vorlesungen uber allgemeine Relativitätstheorie, Springer, Berlin, 1923, 338 pp. | MR | Zbl
[10] R.M. Wald, General Relativity, Univ. Chicago Press, Chicago, 1984, 491 pp. | MR | Zbl
[11] N.V. Mitskevich, The Physical Fields in General Relativity, Nauka, M., 1969, 326 pp.
[12] E.F. Taylor, J.A. Wheeler, Spacetime Physics, 2nd ed., Freeman, New York, 1992, 208 pp.
[13] H. Weyl, Space-Time-Matter, Methuen Co., London, 1922, 495 pp. | Zbl
[14] L.B. Okun', Energy and Mass in Relativity Theory, World Scientific, New Jersey, 2009, 311 pp. | Zbl
[15] L.B. Okun', “Mass versus relativistic and rest masses”, Am. J. Phys., 77:5 (2009), 430–431 | DOI
[16] C. Brans, R.H. Dicke, “Mach's principle and a relativistic theory of gravitation”, Phys. Rev., 124 (1961), 925–935 | DOI | MR | Zbl
[17] V. Fock, The Theory of Space, Time, and Gravitation, Pergamon, London, 1964, 448 pp. | MR
[18] L.B. Okun', K.G. Selivanov, V.L. Telegdi, “Gravitation, photons, clocks”, Physics-Uspekhi, 42:10 (1999), 1045–1050 | DOI
[19] N. Straumann, General Relativity and Relativistic Astrophysics, Springer, Berlin, 1984, 459 pp. | MR
[20] N. Straumann, General Relativity With Applications to Astrophysics, Springer, Berlin, 2004, 674 pp. | MR | Zbl