Finite groups with given local sections
Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 107-110

Voir la notice de l'article provenant de la source Math-Net.Ru

A group is called primary if it is a finite $p$-group for some prime $p$. If $\sigma=\{\sigma_i\mid i\in I\}$ is some partition of $\mathbb{P}$, that is, $P=\bigcup_{i\in I}\sigma_i$ and $\sigma_i\cap\sigma_j=\varnothing$ for all $i\ne j$, then we say that a finite group $G$ is: $\sigma$-primary if it is a $\sigma_i$-group for some $i$; $\sigma$-nilpotent if $G=G_1\times\dots\times G_n$ for some $\sigma$-primary groups $G_1,\dots,G_n$. If $N=N_G(A)$ for some primary non-identity subgroup $A$ of $G$, then we say that $N/A_G$ is a local section of $G$. In this paper, we study a finite group $G$ under hypothesis that all proper local sections of $G$ belong to a saturated hereditary formation $\mathfrak{F}$, and we determine the normal structure of $G$ in the case when all local sections of $G$ are $\sigma$-nilpotent.
Keywords: finite group, hereditary saturated formation, $\mathfrak{F}$-hypercentre, local section, $\sigma$-nilpotent group.
@article{PFMT_2019_3_a18,
     author = {B. Hu and J. Huang and A. N. Skiba},
     title = {Finite groups with given local sections},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {107--110},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_3_a18/}
}
TY  - JOUR
AU  - B. Hu
AU  - J. Huang
AU  - A. N. Skiba
TI  - Finite groups with given local sections
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 107
EP  - 110
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_3_a18/
LA  - en
ID  - PFMT_2019_3_a18
ER  - 
%0 Journal Article
%A B. Hu
%A J. Huang
%A A. N. Skiba
%T Finite groups with given local sections
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 107-110
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_3_a18/
%G en
%F PFMT_2019_3_a18
B. Hu; J. Huang; A. N. Skiba. Finite groups with given local sections. Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 107-110. http://geodesic.mathdoc.fr/item/PFMT_2019_3_a18/