Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2019_3_a17, author = {V. N. Tyutyanov}, title = {Simple non-abelian groups with second maximal pronormal subgroups}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {104--106}, publisher = {mathdoc}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2019_3_a17/} }
V. N. Tyutyanov. Simple non-abelian groups with second maximal pronormal subgroups. Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 104-106. http://geodesic.mathdoc.fr/item/PFMT_2019_3_a17/
[1] The Kourovka Notebook: Unsolved Problems in Group Theory, Institute of Mathematics, Russian Academy of Scinces, Novosibirsk, 2018
[2] B. Huppert, “Normalteiler and maximal Untergruppen endlicher Gruppen”, Math. Z., 60 (1954), 409–434 | DOI | MR | Zbl
[3] M. Suzuki, “The nonexistence of certain type of simple groups of odd order”, Proc. Amer. Math. Soc., 8 (1957), 686–695 | DOI | MR
[4] Z. Janko, “Endliche Gruppen mit lauter nilpotenten zweitmaximalen Untergruppen”, Math. Z., 79 (1962), 422–424 | DOI | MR | Zbl
[5] V.A. Belonogov, “Konechnye razreshimye gruppy s nilpotentnymi maksimalnymi podgruppami”, Matem. zametki, 3:1 (1968), 21–32
[6] V.S. Monakhov, V.N. Kniahina, “Finite groups with P-subnormal subgroups”, Ricerche di Matematica, 60:2 (2013), 307–322 | DOI | MR
[7] T.V. Tikhonenko, V.N. Tyutyanov, “Konechnye gruppy s maksimalnymi khollovymi podgruppami”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2008, no. 5(50), 198–206
[8] V.S. Monakhov, “Finite $\pi$-solvable groups whose maximal subgroups have the Hall property”, Math. Notes, 84:3 (2008), 363–366 | DOI | MR | Zbl
[9] N.V. Maslova, D.O. Revin, “Finite groups whose maximal subgroups have the Hall property”, Siberian Advances Math., 23:3 (2013), 196–209 | DOI | MR
[10] J.H. Conway et al., Atlas of finite groups, Clarendon Press, London, 1985, 252 pp. | MR | Zbl
[11] B. Huppert, Endliche Gruppen I, Springer, Berlin–Heidelberg–New York, 1967, 793 pp. | MR | Zbl
[12] H. Wielandt, “Zum Satz von Sylow. II”, Math. Z., 71 (1959), 461–462 | DOI | MR | Zbl
[13] D. Gorenstein, Finite groups, Harper and Row, New York, 1968, 527 pp. | MR | Zbl