Simple non-abelian groups with second maximal pronormal subgroups
Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 104-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

V.I. Zenkov put in the Kourovskaya notebook the following problem 19.109: is it true that in a non-abelian finite simple group $G$ all maximal subgroups are Hall subgroups if and only if every second maximal subgroup is pronormal in $G$? This paper shows that this problem is solved negatively.
Keywords: finite group, second maximal subgroup, pronormal subgroup.
@article{PFMT_2019_3_a17,
     author = {V. N. Tyutyanov},
     title = {Simple non-abelian groups with second maximal pronormal subgroups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {104--106},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_3_a17/}
}
TY  - JOUR
AU  - V. N. Tyutyanov
TI  - Simple non-abelian groups with second maximal pronormal subgroups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 104
EP  - 106
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_3_a17/
LA  - ru
ID  - PFMT_2019_3_a17
ER  - 
%0 Journal Article
%A V. N. Tyutyanov
%T Simple non-abelian groups with second maximal pronormal subgroups
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 104-106
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_3_a17/
%G ru
%F PFMT_2019_3_a17
V. N. Tyutyanov. Simple non-abelian groups with second maximal pronormal subgroups. Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 104-106. http://geodesic.mathdoc.fr/item/PFMT_2019_3_a17/

[1] The Kourovka Notebook: Unsolved Problems in Group Theory, Institute of Mathematics, Russian Academy of Scinces, Novosibirsk, 2018

[2] B. Huppert, “Normalteiler and maximal Untergruppen endlicher Gruppen”, Math. Z., 60 (1954), 409–434 | DOI | MR | Zbl

[3] M. Suzuki, “The nonexistence of certain type of simple groups of odd order”, Proc. Amer. Math. Soc., 8 (1957), 686–695 | DOI | MR

[4] Z. Janko, “Endliche Gruppen mit lauter nilpotenten zweitmaximalen Untergruppen”, Math. Z., 79 (1962), 422–424 | DOI | MR | Zbl

[5] V.A. Belonogov, “Konechnye razreshimye gruppy s nilpotentnymi maksimalnymi podgruppami”, Matem. zametki, 3:1 (1968), 21–32

[6] V.S. Monakhov, V.N. Kniahina, “Finite groups with P-subnormal subgroups”, Ricerche di Matematica, 60:2 (2013), 307–322 | DOI | MR

[7] T.V. Tikhonenko, V.N. Tyutyanov, “Konechnye gruppy s maksimalnymi khollovymi podgruppami”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2008, no. 5(50), 198–206

[8] V.S. Monakhov, “Finite $\pi$-solvable groups whose maximal subgroups have the Hall property”, Math. Notes, 84:3 (2008), 363–366 | DOI | MR | Zbl

[9] N.V. Maslova, D.O. Revin, “Finite groups whose maximal subgroups have the Hall property”, Siberian Advances Math., 23:3 (2013), 196–209 | DOI | MR

[10] J.H. Conway et al., Atlas of finite groups, Clarendon Press, London, 1985, 252 pp. | MR | Zbl

[11] B. Huppert, Endliche Gruppen I, Springer, Berlin–Heidelberg–New York, 1967, 793 pp. | MR | Zbl

[12] H. Wielandt, “Zum Satz von Sylow. II”, Math. Z., 71 (1959), 461–462 | DOI | MR | Zbl

[13] D. Gorenstein, Finite groups, Harper and Row, New York, 1968, 527 pp. | MR | Zbl