Generalized rank composition formations of finite groups
Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 93-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper one construction of composition formations was introduced. This construction contains formations of quasi-$\mathfrak{F}$-groups, $c$-supersoluble groups and groups defined by ranks of chief factors. The structure of groups from introduced formations was described. As corollaries some results of different authors were obtained. A question of L.A. Shemetkov about the intersection of $\mathfrak{F}$-maximal subgroups and the $\mathfrak{F}$-hypercenter was investigated for these formations.
Keywords: finite group, $c$-supersoluble group, quasi-$\mathfrak{F}$-group, hereditary local formation, $\mathfrak{F}$-maximal subgroup, $\mathfrak{F}$-hypercenter.
Mots-clés : quasinilpotent group, composition formation
@article{PFMT_2019_3_a15,
     author = {V. I. Murashka},
     title = {Generalized rank composition formations of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {93--99},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_3_a15/}
}
TY  - JOUR
AU  - V. I. Murashka
TI  - Generalized rank composition formations of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 93
EP  - 99
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_3_a15/
LA  - ru
ID  - PFMT_2019_3_a15
ER  - 
%0 Journal Article
%A V. I. Murashka
%T Generalized rank composition formations of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 93-99
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_3_a15/
%G ru
%F PFMT_2019_3_a15
V. I. Murashka. Generalized rank composition formations of finite groups. Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 93-99. http://geodesic.mathdoc.fr/item/PFMT_2019_3_a15/

[1] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp. | MR

[2] H. Heineken, “Group classes defined by chief factor ranks”, Boll. Un. Mat. Ital. B, 16 (1979), 754–764 | MR | Zbl

[3] Characterizations of some classes of finite soluble groups, Ph. D. thesis, University of Warwick, 1981

[4] B. Huppert, “Zur Gaschiitzschen Theorie der Formationen”, Math. Ann., 164 (1966), 133–141 | DOI | MR | Zbl

[5] J. Kohler, “Finite groups with all maximal subgroups of prime or prime square index”, Canad. J. Math., 16 (1964), 435–442 | DOI | MR | Zbl

[6] K.L. Haberl, H. Heineken, “Fitting classes defined by chief factor ranks”, J. London Math. Soc., 29 (1984), 34–40 | DOI | MR | Zbl

[7] W. Guo, Structure theory for canonical classes of finite groups, Springer, Heidelberg–New-York–Dordrecht–London, 2015, 359 pp. | MR | Zbl

[8] H. Bender, “On groups with abelian Sylow 2-subgroups”, Math. Z., 117 (1970), 164–176 | DOI | MR | Zbl

[9] L.A. Shemetkov, A.N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989, 256 pp. | MR

[10] W. Guo, A.N. Skiba, “On finite quasi-$\mathfrak{F}$-groups”, Comm. Algebra, 37 (2009), 470–481 | DOI | MR | Zbl

[11] W. Guo, A.N. Skiba, “On some classes of finite quasi-$\mathfrak{F}$-groups”, J. Group Theory, 12 (2009), 407–417 | DOI | MR | Zbl

[12] V.A. Vedernikov, “O nekotorykh klassakh konechnykh grupp”, DAN BSSR, 32:10 (1988), 872–875 | MR | Zbl

[13] D.J.S. Robinson, “The structure of finite groups in whitch permutability is a transitive relation”, J. Austral. Math. Soc., 70 (2001), 143–159 | DOI | MR | Zbl

[14] A.F. Vasilev, T.I. Vasileva, E.N. Myslovets, “O konechnykh gruppakh s zadannym normalnym stroeniem”, Sib. elektron. matem. izv., 13 (2016), 897–910 | MR | Zbl

[15] E.N. Myslovets, “J-konstruktsii kompozitsionnykh formatsii i proizvedeniya konechnykh grupp”, Problemy fiziki, matematiki i tekhniki, 2016, no. 4 (29), 68–73 | Zbl

[16] E.N. Myslovets, “O konechnykh ca-F-gruppakh”, Problemy fiziki, matematiki i tekhniki, 2014, no. 2 (19), 64–68 | Zbl

[17] E.N. Myslovets, A.F. Vasilev, “Konechnye obobschenno $c$-sverkhrazreshimye gruppy i ikh vzaimno perestanovochnye proizvedeniya”, Problemy fiziki, matematiki i tekhniki, 2016, no. 2 (27), 45–53 | Zbl

[18] A.F. Vasilea, T.I. Vasileva, “O konechnykh gruppakh, u kotorykh glavnye faktory yavlyayutsya prostymi gruppami”, Izv. vuzov. Matem., 1997, no. 11, 10–14

[19] A.F. Vasilev, T.I. Vasileva, V.N. Tyutyanov, “O konechnykh gruppakh sverkhrazreshimogo tipa”, Sib. mat. zhurn., 51:6 (2010), 1270–1281 | MR | Zbl

[20] A.F. Vasilev, T.I. Vasileva, E.N. Myslovets, “Konechnye rasshirenno $c$-sverkhrazreshimye gruppy i ikh vzaimno perestanovochnye proizvedeniya”, Sib. matem. zhurn., 57:3 (2016), 603–616 | MR | Zbl

[21] B. Huppert, N. Blacburn, Finite groups III, Springer, Berlin–Heidelberg–New York, 1982, 454 pp. | MR | Zbl

[22] R. Baer, “Group elements of prime power index”, Trans. Amer. Math. Soc., 75 (1953), 20–47 | DOI | MR | Zbl

[23] A.N. Skiba, “On the $\mathfrak{F}$-hypercentre and the intersection of all $\mathfrak{F}$-maximal subgroups of a finite group”, J. Pure Appl. Algebra, 216 (2012), 789–799 | DOI | MR | Zbl

[24] J.C. Beidleman, H. Heineken, “A note on intersections of maximal $\mathfrak{F}$-subgroups”, J. Algebra, 333 (2011), 120–127 | DOI | MR | Zbl

[25] V.I. Murashka, “On the $\mathfrak{F}$-hypercenter and the intersection of $\mathfrak{F}$-maximal subgroups of a finite group”, J. Group. Theory, 21:3 (2018), 463–473 | DOI | MR | Zbl