Finite groups with restrictions on two maximal subgroups
Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 88-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $A$ of a group $G$ is called seminormal in $G$, if there exists a subgroup $B$ such that $G = AB$ and $AB_1$ is a proper subgroup of $G$ for every proper subgroup $B_1$ of $B$. We introduce the new concept that unites subnormality and seminormality. A subgroup $A$ of a group $G$ is called semisubnormal in $G$, if either $A$ is subnormal in $G$, or is seminormal in $G$. In this paper we proved the supersolubility of a group $G$ under the condition that all Sylow subgroups of two non-conjugate maximal subgroups of $G$ are semisubnormal in $G$. Also we obtained the nilpotency of the second derived subgroup $(G')'$ of a group $G$ under the condition that all maximal subgroups of two non-conjugate maximal subgroups are semisubnormal in $G$.
Keywords: supersoluble groups, semisubnormal subgroup, derived subgroup, Sylow subgroup, maximal subgroup.
@article{PFMT_2019_3_a14,
     author = {V. S. Monakhov and A. A. Trofimuk and E. V. Zubei},
     title = {Finite groups with restrictions on two maximal subgroups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {88--92},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_3_a14/}
}
TY  - JOUR
AU  - V. S. Monakhov
AU  - A. A. Trofimuk
AU  - E. V. Zubei
TI  - Finite groups with restrictions on two maximal subgroups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 88
EP  - 92
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_3_a14/
LA  - en
ID  - PFMT_2019_3_a14
ER  - 
%0 Journal Article
%A V. S. Monakhov
%A A. A. Trofimuk
%A E. V. Zubei
%T Finite groups with restrictions on two maximal subgroups
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 88-92
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_3_a14/
%G en
%F PFMT_2019_3_a14
V. S. Monakhov; A. A. Trofimuk; E. V. Zubei. Finite groups with restrictions on two maximal subgroups. Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 88-92. http://geodesic.mathdoc.fr/item/PFMT_2019_3_a14/

[1] X. Su, “On semi-normal subgroups of finite group”, J. Math. (Wuhan), 8:1 (1988), 7–9 | MR

[2] P. C. Wang, “Some sufficient conditions of a nilpotent group”, Journal of Algebra, 148:2 (1992), 289–295 | DOI | MR | Zbl

[3] T. Foguel, “On seminormal subgroups”, Journal of Algebra, 165 (1994), 633–635 | DOI | MR | Zbl

[4] A. Carocca, H. Matos, “Some solvability criteria for finite groups”, Hokkaido Math. J, 26 (1997), 157–161 | DOI | MR | Zbl

[5] V.V. Podgornaya, “Seminormal subgroups and supersolubility of finite groups”, Vesti Akad. Navuk Belarusi Ser. Fiz. Mat. Navuk, 4:4 (2000), 22–25 (in Russian) | MR

[6] V.V. Podgornaya, “Supersolubility of a finite group with seminormal second maximal subgroups”, Francisk Scorina Gomel State University proceedings, 47:2 (2008), 154–156 (in Russian)

[7] V.S. Monakhov, “Finite groups with a seminormal Hall subgroup”, Math. Notes, 80:4 (2006), 542–549 | DOI | MR | Zbl

[8] V.N. Knyagina, V.S. Monakhov, “Finite groups with seminormal Schmidt subgroups”, Algebra and Logic, 46:4 (2007), 244–249 | DOI | MR | Zbl

[9] W. Guo, “Finite groups with seminormal Sylow subgroups”, Acta Mathematica Sinica, 24:10 (2008), 1751–1758 | DOI | MR

[10] V.S. Monakhov, A.A. Trofimuk, “Finite groups with two supersoluble subgroups”, J. Group Theory, 22 (2019), 297–312 | DOI | MR | Zbl

[11] V.S. Monakhov, Introduction to the Theory of Finite groups and their Classes, Vyshejshaja shkola, Minsk, 2006, 207 pp. (in Russian)

[12] B. Huppert, Endliche Gruppen I, Springer, Berlin–Heidelberg–New York, 1967, 796 pp. | MR | Zbl

[13] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 892 pp. | MR

[14] L.A. Shemetkov, Formations of finite groups, Nauka, M., 1978, 272 pp. (in Russian) | MR | Zbl

[15] V.S. Monakhov, I.K. Chirik, “On the supersoluble residual of a product of subnormal supersoluble subgroups”, Siberian Math. J., 58:2 (2017), 271–280 | DOI | MR | Zbl

[16] L.S. Kazarin, Yu.A. Korzyukov, “Finite solvable groups with supersolvable maximal subgroups”, Soviet Math. (Iz. VUZ), 24:5 (1980), 23–29 (in Russian) | MR | Zbl

[17] A.V. Buzlanov, “Finite soluble groups with given maximal subgroups”, Voprosy algebry, 6 (1993), 35–45 (in Russian) | MR | Zbl

[18] K. Doerk, “Minimal nicht uberauflosbare, endliche Gruppen”, Math. Z, 91 (1966), 198–205 | DOI | MR | Zbl