A massive gravitational field in flat spacetime. I. Gauge invariance and field equations
Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 45-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

The canonical linear theory of a massive spinless field is adapted as special-relativistic gauge-invariant model of gravity with a quadratic self-action.
Keywords: scalar gravity, gravitationally dependent mass.
Mots-clés : massive graviton, scale invariance
@article{PFMT_2019_2_a5,
     author = {M. A. Serdyukova and A. N. Serdyukov},
     title = {A massive gravitational field in flat spacetime. {I.} {Gauge} invariance and field equations},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {45--53},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_2_a5/}
}
TY  - JOUR
AU  - M. A. Serdyukova
AU  - A. N. Serdyukov
TI  - A massive gravitational field in flat spacetime. I. Gauge invariance and field equations
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 45
EP  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_2_a5/
LA  - en
ID  - PFMT_2019_2_a5
ER  - 
%0 Journal Article
%A M. A. Serdyukova
%A A. N. Serdyukov
%T A massive gravitational field in flat spacetime. I. Gauge invariance and field equations
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 45-53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_2_a5/
%G en
%F PFMT_2019_2_a5
M. A. Serdyukova; A. N. Serdyukov. A massive gravitational field in flat spacetime. I. Gauge invariance and field equations. Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 45-53. http://geodesic.mathdoc.fr/item/PFMT_2019_2_a5/

[1] A.A. Logunov, Relativistic Theory of Gravity, Nova Science Publishers, Commack, USA, 1998, 319 pp. | MR

[2] H. Bondi, T. Gold, “The field of a uniformly accelerated charge, with special reference to the problem of gravitational acceleration”, Proc. Roy. Soc., A (1955), 416–424 | MR | Zbl

[3] S. Parrott, “Radiation from a Uniformly Accelerated Charge and the Equivalence Principle”, Found. Phys., 32 (2002), 407–440 | DOI | MR

[4] E. Poisson, A. Pound, I. Vega, “The motion of point particles in curved spacetime”, Living Rev. Relativity, 14 (2011), 7–190 | DOI | Zbl

[5] D. Hilbert, Relativity, Quantum Theory and Epistemology, David Hilbert's Lectures on the Foundations of Physics, 1915–1927, eds. T. Sauer, U. Majer, Springer, Heidelberg, Germany, 2009, 795 pp. | MR | Zbl

[6] E. Noether, “Invariant Variation Problems”, Transp. Theory Statist. Phys., 1971, no. 1, 186–207 | DOI | MR | Zbl

[7] V.I. Denisov, A.A. Logunov, “The inertial mass defined in the general theory of relativity has no physical meaning”, Theoret. and Math. Phys., 51 (1982), 421–426 | DOI | MR | Zbl

[8] A.A. Logunov, M.A. Mestvirishvili, “Relativistic theory of gravitation”, Theoret. and Math. Phys., 61:3 (1985), 1170–1183 | DOI | MR

[9] A.A. Logunov, M.A. Mestvirishvili, “Relativistic theory of gravitation”, Foundations of Physics, 16 (1986), 1–26 | DOI | MR

[10] A.A. Logunov, Yu.M. Loskutov, M.A. Mestvirishvili, “Relativistic theory of gravitation and criticism of general relativity”, Theor. Math. Phys., 73 (1987), 1131–1148 | DOI | MR | Zbl

[11] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, New York, 1972, 657 pp.

[12] D.S. Gorbunov, V.A. Rubakov, Introduction to the Theory of Early Universe: Hot Big Bang Theory, World Scientific, New Jersey, 2011, 473 pp. | Zbl

[13] C. Misner, K. Thorne, J.A. Wheeler, Gravitation, Freeman Co, San Francisco, 1973, 1278 pp. | MR

[14] W. Pauli, Theory of Relativity, Pergamon, London, 1958, 241 pp. | MR | Zbl

[15] A.S. Eddington, The Mathematical Theory of Relativity, Cambridge University Press, Cambridge, 1930, 270 pp. | MR

[16] A.L. Zel'manov, V.G. Agakov, Elements of the General Theory of Relativity, Nauka, M., 1989, 236 pp. (in Russian) | MR | Zbl

[17] E. Schrodinger, “Die Energiekomponeneten des Gravitationfeldes”, Phys. Zeitschr., 19 (1918), 4–7 | Zbl

[18] H. Bauer, “Uber die Energiekomponenten des Gravitationsfeldes”, Phys. Zeitschr., 19 (1918), 163–165 | Zbl

[19] P.A.M. Dirac, “The excellence of Einstein's theory of gravitation”, Einstein: the First Hundred Years, eds. M. Goldsmith, A. Mackay, J. Woudhuysen, Pergamon, 1980, 41–46 | DOI

[20] V. Fock, The Theory of Space, Time, and Gravitation, Pergamon, London, 1964, 448 pp. | MR

[21] R.P. Feynman et al., Feynman Lectures on Gravitation, Addison-Wesley, Reading, Pennsylvania, 1995, 232 pp.

[22] H. Weyl, How far can one get with a linear field theory of gravitation in flat space-time?, Amer. J. Math., 66 (1944), 591–604 | DOI | MR | Zbl

[23] A.N. Serdyukov, “A minimal relativistic model of gravitation within standard restrictions of the classical theory of fields”, Phys. of Part. and Nucl. Lett., 6 (2009), 190–201 | DOI

[24] A. Einstein, A.D. Fokker, “Nordström's Theory of Gravitation from the Point of View of the Absolute Differential Calculus”, Doc. 28, The Collected Papers of Einstein, v. 4, Princeton Univ. Press, Princeton, New Jersey, 1995, 588–597 | MR

[25] G. Nordström, “Relativitatsprinzip und Gravitation”, Phys. Z., 13 (1912), 1126–1129 | Zbl

[26] G. Nordström, “Trage und schwere Masse in der Relavitatsmechanik”, Ann. Phys. (Leipzig), 40 (1913), 856–878 | DOI | Zbl

[27] G. Nordström, “Zur Theorie der Gravitation vom Standpunkt des Relavitatsprinzip”, Ann. Phys. (Leipzig), 42 (1913), 533–554 | DOI | Zbl

[28] A. Einstein, “On the Present State of the Problem of Gravitation”, Doc. 17, The Collected Papers of Einstein, v. 4, Princeton Univ. Press, Princeton, New Jersey, 1995, 486–503 | MR

[29] L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, v. 2, The Classical theory of fields, Butterworth-Heinemann, Oxford, 1987, 428 pp. | MR

[30] J.D. Norton, A. Einstein, “Nordström and the early demise of scalar, Lorentz covariant theories of gravitation”, Archive for History of Exact Sciences, 45 (1992), 17–94 | DOI | MR | Zbl

[31] R.H. Dicke, “Mach's principle and invariance under transformation of units”, Phys. Rev., 125 (1962), 2163–2167 | DOI | MR | Zbl

[32] M. Wellner, G. Sandri, “Scalar gravitation”, Am. J. Phys., 32 (1964), 36–39 | DOI | MR | Zbl

[33] O. Bergmann, “Scalar field theory as a theory of gravitation. I”, Am. J. Phys., 24 (1956), 38–42 | DOI | Zbl

[34] I.M. Gel'fand, R.A. Minlos, Z.Ya. Shapiro, Representations of the Rotation and Lorentz Groups and Their Applications, Pergamon, Oxford, 1963, 366 pp. | MR | Zbl

[35] E. Corinaldesi, Classical mechanics for physics graduate students, World Scientific, Syngapur, 1998, 286 pp. | MR | Zbl

[36] L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, v. 1, Mechanics, Butterworth-Heinemann, Oxford, 1976, 170 pp. | MR

[37] M.A. Serdyukova, “The Law of Energy Momentum Conservation of Massive Spinzero Gravitational Field”, Problems of Interaction of Radiation with Matter, Proceedings of the V International Scientific Conference Dedicated to Academician B. V. Bokut (Gomel, November 14–16, 2018), v. 1, F. Skorina Gomel State University, Gomel, 2018, 193–199

[38] L. Brillouin, Relativity Reexavined, Academic Press, New York, 1970, 111 pp.

[39] S. Deser, L. Halpern, “Self-coupled scalar gravitation”, Gen. Rel. Grav., 1970, no. 1, 131–136 | DOI | MR

[40] G. 't Hooft, Introduction to General Relativity, Utrecht University, Utrecht, Netherlands, 2012, 71 pp.

[41] C. Wetterich, “Modified Gravity and Coupled Quintessence”, Modifications of Einstein's Theory of Gravity at Large Distances, Lecture Notes in Physics, 892, ed. Papantonopoulos E., Springer, 2015, 57–95 | DOI | MR

[42] I.G. Dudko, Yu.P. Vyblyi, “Scalar field with the source in the form of the stress-energy tensor trace as a darkenergy model”, Gravitation and Cosmology, 22 (2016), 368–373 | DOI | MR

[43] Yu.P. Vyblyi, A.A. Leonovich, “Interacting scalar field in the theory of gravity”, Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2017, no. 4, 98–103 | MR