Recirculation method for temperature measurement by the fiber optical sensor
Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 36-44

Voir la notice de l'article provenant de la source Math-Net.Ru

A new principle of physical quantities measurement is described, based on recording changes in the frequency of single optical pulses recirculation at different wavelengths in a closed fiber optic loop with their periodic regeneration in amplitude, shape and duration. It was established that the relative long-term instability of the recirculation frequency does not exceed $2\cdot10^{-6}$ for fibers longer than $200$ m with a measurement time of $1$ s and an observation time more than $1$ hour. Using numerical simulations, it was shown that the resolution of the temperature sensor is $0.15$$0.1^\circ$ C in the temperature range $0$$500^\circ$ C using quartz fiber with a metallic coating.
Keywords: fiber optic sensor, recirculation frequency, relative long-term instability, temperature, resolution.
@article{PFMT_2019_2_a4,
     author = {A. V. Polyakov},
     title = {Recirculation method for temperature measurement by the fiber optical sensor},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {36--44},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_2_a4/}
}
TY  - JOUR
AU  - A. V. Polyakov
TI  - Recirculation method for temperature measurement by the fiber optical sensor
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 36
EP  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_2_a4/
LA  - ru
ID  - PFMT_2019_2_a4
ER  - 
%0 Journal Article
%A A. V. Polyakov
%T Recirculation method for temperature measurement by the fiber optical sensor
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 36-44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_2_a4/
%G ru
%F PFMT_2019_2_a4
A. V. Polyakov. Recirculation method for temperature measurement by the fiber optical sensor. Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 36-44. http://geodesic.mathdoc.fr/item/PFMT_2019_2_a4/