Recirculation method for temperature measurement by the fiber optical sensor
Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 36-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new principle of physical quantities measurement is described, based on recording changes in the frequency of single optical pulses recirculation at different wavelengths in a closed fiber optic loop with their periodic regeneration in amplitude, shape and duration. It was established that the relative long-term instability of the recirculation frequency does not exceed $2\cdot10^{-6}$ for fibers longer than $200$ m with a measurement time of $1$ s and an observation time more than $1$ hour. Using numerical simulations, it was shown that the resolution of the temperature sensor is $0.15$$0.1^\circ$ C in the temperature range $0$$500^\circ$ C using quartz fiber with a metallic coating.
Keywords: fiber optic sensor, recirculation frequency, relative long-term instability, temperature, resolution.
@article{PFMT_2019_2_a4,
     author = {A. V. Polyakov},
     title = {Recirculation method for temperature measurement by the fiber optical sensor},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {36--44},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_2_a4/}
}
TY  - JOUR
AU  - A. V. Polyakov
TI  - Recirculation method for temperature measurement by the fiber optical sensor
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 36
EP  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_2_a4/
LA  - ru
ID  - PFMT_2019_2_a4
ER  - 
%0 Journal Article
%A A. V. Polyakov
%T Recirculation method for temperature measurement by the fiber optical sensor
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 36-44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_2_a4/
%G ru
%F PFMT_2019_2_a4
A. V. Polyakov. Recirculation method for temperature measurement by the fiber optical sensor. Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 36-44. http://geodesic.mathdoc.fr/item/PFMT_2019_2_a4/

[1] T. Okosi i dr., Volokonno-opticheskie datchiki, per. s yapon., Energoatomizdat, L., 1990, 256 pp.

[2] E. Udd (red.), Volokonno-opticheskie datchiki, Tekhnosfera, M., 2008, 520 pp.

[3] G. Bolognini et al., “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification”, Measurement Science and Technology, 18:10 (2007), 3211–3218 | DOI

[4] D. Liu, S. Liu, H. Liu, “Temperature performance of Raman scattering in data fiber and its application in distributed temperature fiber-optic sensor”, Frontiers of Optoelectronics in China, 2:2 (2009), 159–162 | DOI

[5] A. Minardo, R. Bernini, L. Zeni, “Stimulated Brillouin scattering modeling for high-resolution, time-domain distributed sensing”, Optics Express, 15:16 (2007), 10397–10407 | DOI

[6] J. Geng et al., “Distributed fiber temperature and strain sensor using coherent radio-frequency detection of spontaneous Brillouin scattering”, Applied Optics, 46:23 (2007), 5928–5932 | DOI

[7] F. Wang, X. Bao, L. Chen, “Using pulse with a dark base to achieve high spatial and frequency resolution for the distributed Brillouin sensor”, Optics Letters, 33:22 (2008), 2707–2709 | DOI

[8] Xiaochun Li et al., “Processing and microstructures of fiber Bragg grating sensors embedded in stainless steel”, Metallurgical and Materials Transactions A, 33A:9 (2002), 3019–3024

[9] Y. Wang et al., “Quasi-distributed fiber Bragg grating sensor system based on a Fourier domain mode locking fiber laser”, Laser Physics, 19:3 (2009), 450–454 | DOI

[10] En-bang Li, Jian-quan Yao, Wei-gang Zhang, “Improving dynamic response of a temperatyre-only FBG sensor”, Optoelectronics Letter, 2:2 (2006), 100–103

[11] P.A. Demyanenko, “Predelnye vozmozhnosti analogovykh opticheskikh datchikov v sostave VOS”, Radiotekhnika, 1988, no. 2, 88–90

[12] P.A. Demyanenko, Yu.F. Zinkovskii, M.I. Prokofev, “Izmeritelnye preobrazovateli na osnove volokonno-opticheskikh datchikov”, Foton-Ekspress, 2005, no. 6, 181–187

[13] C. Wang, S.T. Scherrer, “Fiber loop ringdown for physical sensor development: pressure sensor”, Applied Optics, 43:35 (2004), 6458–6464 | DOI

[14] J. Du et al., “Highly sensitive and reconfigurable fiber optic current sensor by optical recirculating in a fiber loop”, Optics Express, 24:16 (2016), 17980–17988 | DOI

[15] M. Nakazawa, M. Tokuda, N. Uchida, “Self-sustained intensity oscillation of a laser diode introduced by a delayed electrical feedback using an optical fiber and an electrical amplifier”, Applied Physics Letters, 39:5 (1981), 379–381 | DOI

[16] V.V. Grigoryants i dr., “Generatsiya radiosignalov v sisteme lazer-opticheskaya liniya zaderzhki”, Kvantovaya elektronika, 11:4 (1984), 766–773

[17] V.V. Grigor'yants et al., “A laser diode with feedback using a fibre delay line as a stable-frequency signal generator and potential fibre sensor”, Optical and Quantum Electronics, 17:4 (1985), 263–267 | DOI

[18] V.V. Grigoryants i dr., “Parametricheskaya stabilnost avtomodulyatsionnykh kolebanii v koltsevoi sisteme lazer-volokonno-opticheskaya liniya zaderzhki”, Kvantovaya elektronika, 13:12 (1986), 2408–2413

[19] B.G. Gorshkov, A.Yu. Kuzin, Volokonno-opticheskii datchik davleniya, a.s. 1506313 SSSR, G 01 L 11/00, No 4375126/24-10, zayavl. 28.12.87, 07.09.89

[20] V.S. Ivanov, A.F. Kotyuk, A.V. Kuzin, “Volokonno-opticheskie datchiki kak perspektivnye elementy sistemy distantsionnoi peredachi razmerov edinits fizicheskikh velichin i ikh mnogofunktsionalnykh preobrazovanii”, Izmeritelnaya tekhnika, 1998, no. 10, 22–33

[21] A.Yu. Kuzin, V.N. Khramenkov, “Perekhod ot uporyadochennosti k khaosu v volokonno-opticheskom datchike na baze nelineinoi avtokolebatelnoi sistemy”, Datchiki i preobrazovateli informatsii sistem izmereniya, kontrolya i upravleniya, Sb. materialov XII nauch.-tekhn. konf. s uchastiem zarubezhnykh spetsialistov (Sudak, 23–30 maya 2000 g.), Ministerstvo obrazovaniya RF, Rossiiskaya metrologicheskaya akademiya, MGIEM, M., 2000, 8–9

[22] A.V. Polyakov, “Chastotnaya volokonno-opticheskaya izmeritelnaya sistema”, Datchiki i sistemy, 2008, no. 1, 29–32

[23] A.V. Polyakov, M.A. Ksenofontov, “Quasi-distributed recirculation fiber-optic temperature sensor”, Optical Memory and Neural Networks, 18:4 (2009), 271–277 | DOI

[24] A.V. Polyakov, T.D. Prokopenkova, “Kvaziraspredelennaya volokonno-opticheskaya sistema izmereniya temperatury retsirkulyatsionnogo tipa na osnove tekhnologii spektralnogo multipleksirovaniya”, Pribory i metody izmerenii, 8:2 (2017), 131–141

[25] J. Jasny, B. Nickel, P. Borowicz, “Wavelength- and temperature-dependent measurement of refractive indices”, Journal of the Optical Society of America B, 21:4 (2004), 729–738 | DOI

[26] P.-E. Dupouy et al., “Interferometric measurement of the temperature dependence of an index of refraction: application to fused silica”, Applied Optics, 49:4 (2010), 678–682 | DOI

[27] Zhi-Yong Wang, Qi Qiu, Shuang-Jin Shi, “Temperature dependence of the refractive index of optical fibers”, Chin. Phys. B, 23:3 (2014), 034201-1–034201-1 | DOI

[28] J. M. Jewell, C. Askins, I. D. Aggarwal, “Interferometric method for concurrent measurement of thermo-optic and thermal expansion coefficients”, Applied Optics, 30:25 (1991), 3656–3660 | DOI

[29] A.A. Abramov i dr., “Temperaturostoikie volokonno-opticheskie moduli”, Trudy IOFAN, 5 (1987), 72–82

[30] B.S. Lunin, S.N. Torbin, “O temperaturnoi zavisimosti modulya Yunga chistykh kvartsevykh stekol”, Vestn. Mosk. un-ta. Ceriya 2. Khimiya, 41 (2000), 172–173

[31] O.V. Bondarenko, D.V. Iorgachev, L.L. Muradyan, “Vybor konstruktsii samonesuschego opticheskogo kabelya po rastyagivayuschim nagruzkam”, Tekhnologiya i konstruirovanie v elektronnoi apparature, 2001, no. 1, 18–21

[32] O.I. Kosyakov i dr., “Vozmozhnost uvelicheniya sroka sluzhby volokonno-opticheskikh linii svyazi”, Izvestiya Vuzov. Priborostroenie, 58:7 (2015), 561–563

[33] A.V. Kondrusev, S.A. Mironov, “Raschet kharakteristik chuvstvitelnogo elementa volokonno-opticheskogo datchika temperatury”, Izvestiya VUZov. Priborostroenie, 46:6 (2003), 49–52