Bioactive multilayer coatings that initiate bone growth: structure and properties
Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 28-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

The composition of a multilayer coating on the basis of Mg + Ca + P$_2$O$_5$ applied to the surface of the intramedullary implant in order to initiate bone tissue growth has been proposed and substantiated. It is shown that the Mg + Ca + Ethidronate + P$_2$O$_5$ + Zn + P$_2$O$_5$ multi-layer system, which was heat-treated at 200° C, has high resistance to abrasion. In SBF buffer solution the layer system is transformed into HA. Influence of heat treatment is manifested in increase of structural order of separate layers.
Mots-clés : hydroxyapatite, etidronate
Keywords: polymethylsilsesquioxane, electron-beam dispersion.
@article{PFMT_2019_2_a3,
     author = {Liu Yiming and A. V. Rogachev and M. A. Yarmolenko and A. A. Rogachev and Jiang Xiaohong and A. S. Rudenkov},
     title = {Bioactive multilayer coatings that initiate bone growth: structure and properties},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {28--35},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_2_a3/}
}
TY  - JOUR
AU  - Liu Yiming
AU  - A. V. Rogachev
AU  - M. A. Yarmolenko
AU  - A. A. Rogachev
AU  - Jiang Xiaohong
AU  - A. S. Rudenkov
TI  - Bioactive multilayer coatings that initiate bone growth: structure and properties
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 28
EP  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_2_a3/
LA  - ru
ID  - PFMT_2019_2_a3
ER  - 
%0 Journal Article
%A Liu Yiming
%A A. V. Rogachev
%A M. A. Yarmolenko
%A A. A. Rogachev
%A Jiang Xiaohong
%A A. S. Rudenkov
%T Bioactive multilayer coatings that initiate bone growth: structure and properties
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 28-35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_2_a3/
%G ru
%F PFMT_2019_2_a3
Liu Yiming; A. V. Rogachev; M. A. Yarmolenko; A. A. Rogachev; Jiang Xiaohong; A. S. Rudenkov. Bioactive multilayer coatings that initiate bone growth: structure and properties. Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 28-35. http://geodesic.mathdoc.fr/item/PFMT_2019_2_a3/

[1] Zhiyu Xue, Mingli Yang, Dingguo Xu, “Nucleation of Biomimetic Hydroxyapatite Nanoparticles on the Surface of Type I Collagen: Molecular Dynamics Investigations”, J. Phys. Chem. C, 123 (2019), 2533–2543 | DOI

[2] A.P.S. Prasanna, G.D. Venkatasubbu, “Sustained release of amoxicillin from hydroxyapatite nanocomposite for bone infections”, Progress in Biomaterials, 7 (2018), 289–296 | DOI

[3] N.C. Reger, A.K. Bhargava, I. Ratha, B. Kundu, V.K. Balla, “Structural and phase analysis of multi-ion doped hydroxyapatite for biomedical applications”, Ceramics International, 45 (2019), 252–263 | DOI

[4] Jintao Xiao, A.V. Rogachev, V.A. Yarmolenko, A.A. Rogachev, Yiming Liu, Xiaohong Jiang, Dongping Sun, M.A. Yarmolenko, “Formation features, structure and properties of bioactive coatings based on phosphate-calcium layers, deposited by a low energy electron beam”, Surface Coatings Technology, 359 (2019), 6–15 | DOI

[5] Lyu Imin, A.V. Rogachev, M.A. Yarmolenko, A.A. Rogachev, Tszyan Syaokhun, A.S. Rudenkov, “Molekulyarnaya struktura odnosloinykh i bisloinykh pokrytii, perspektivnykh pri ikh ispolzovanii v protsessakh osteosinteza”, Problemy fiziki, matematiki i tekhniki, 2019, no. 2(39), 21–27

[6] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 27 (2006), 2907–2915 | DOI

[7] J. Monkkonen, M. Taskinen, S.O.K. Auriola, A. Urtti, “Growth Inhibition of Macrophage-Like and Other Cell Types by Liposome-Encapsulated, Calcium-Bound, and Free Bisphosphonates In Vitro”, J. Drug Target, 2 (1994), 299–308 | DOI

[8] D.G. Wang, C.Z. Chen, X.X. Yang, X.C. Ming, W.L. Zhang, “Effect of bioglass addition on the properties of HA/BG composite films fabricated by pulsed laser deposition”, Ceramics International, 44 (2018), 14528–14533 | DOI

[9] C. Domínguez-Trujillo, E. Peón, E. Chicardi, H. Pérez, J.A. Rodríguez-Ortiz, J.J. Pavon, J. GarciaCouce, J.C. Galvan, F. Garcia-Moreno, Y. Torres, “Sol-gel deposition of hydroxyapatite coatings on porous titanium for biomedical applications”, Surface and Coatings Technology, 333 (2018), 158–162 | DOI

[10] S. Boudia, P. Zuddas, F. Fernane, M. Fiallo, P. Sharrock, “Mineralogical transformation during hydroxyapatite dissolution in simple aqueous solutions”, Chemical Geology, 477 (2017), 85–91 | DOI

[11] S. Shahabi, F. Najafi, A. Majdabadi, T. Hooshmand, M.H. Nazarpak, B. Karimi, S.M. Fatemi, “Effect of Gamma Irradiation on Structural and Biological Properties of a PLGA-PEG-Hydroxyapatite Composite”, The Scientific World Journal, 2014, 420616, 9 pp.

[12] M.T. Costello, “X-ray diffraction of amorphous and crystalline overbased sulphonates”, Lubrication Science, 11 (2005), 207–212

[13] A. Genovese, R.A. Shanks, “Structural and thermal interpretation of the synergy and interactions between the fire retardants magnesium hydroxide and zinc borate”, Polymer Degradation and Stability, 92 (2007), 2–13 | DOI