Complete controllability conditions for linear time-independent system with delay in output
Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 97-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

Strict justification and extension to the linear stationary system with delay in the equation of state and in the output of one approach to reception of complete observability conditions for systems with delay is executed. The approach is based on the reduction of the problem of complete observability of the system with delay to the problem of uniqueness of the solution of a special homogeneous boundary value problem for a system of differential equations without delay in the extended state space. The necessary and sufficient conditions for complete observability, complete identifiability are proved. Complete observability, identifiability in the sense of unambiguous reconstruction of an unobservable piece of the trajectory on the time period of the delay length by the known output function are proved. The conditions are of rank type and are expressed in terms of matrices of the original observation system.
Keywords: complete observability, complete identifiability, time delay, output, criterion.
@article{PFMT_2019_2_a14,
     author = {V. B. Tsekhan},
     title = {Complete controllability conditions for linear time-independent system with delay in output},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {97--104},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_2_a14/}
}
TY  - JOUR
AU  - V. B. Tsekhan
TI  - Complete controllability conditions for linear time-independent system with delay in output
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 97
EP  - 104
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_2_a14/
LA  - ru
ID  - PFMT_2019_2_a14
ER  - 
%0 Journal Article
%A V. B. Tsekhan
%T Complete controllability conditions for linear time-independent system with delay in output
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 97-104
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_2_a14/
%G ru
%F PFMT_2019_2_a14
V. B. Tsekhan. Complete controllability conditions for linear time-independent system with delay in output. Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 97-104. http://geodesic.mathdoc.fr/item/PFMT_2019_2_a14/

[1] O.B. Tsekhan, “Rasscheplyayuschee preobrazovanie dlya lineinoi statsionarnoi singulyarno vozmuschennoi sistemy s zapazdyvaniem i ego primenenie k analizu i upravleniyu spektrom”, Vesnik GrDU imya Yanki Kupaly. Seryya 2. Matematyka, 7:1 (2017), 50–61

[2] R. Kalman, P. Falb, M. Arbib, Ocherki po matematicheskoi teorii sistem, M., 1971

[3] A. Manitius, “F-Controllability and Observability of Linear Retarded Systems”, Appl. Math. Optim., 20 (1982), 3–77 | MR

[4] E.B. Lee, A. Olbrot, “Observability and related structural results for linear hereditary systems”, International J. Control, 34:6 (1981), 1061–1078 | DOI | MR | Zbl

[5] A.V. Metelskii, S.A. Minyuk, “K teorii polnoi nablyudaemosti sistem s zapazdyvaniem”, Differentsialnye uravneniya, 14:4 (1978), 624–633 | Zbl

[6] S. Minyuk, O. Tsekhan, “On observability of linear stationary system with time delay”, Proceedings of the 14th International Conference on Systems Science (Wroclaw, Poland, 11–14 September 2001), v. 1, Systems Theory, Control Theory, eds. Bubnicki Z., Grzech A., Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw, 2001, 197–202

[7] Yu.E. Boyarintsev, Regulyarnye i singulyarnye sistemy lineinykh obyknovennykh differentsialnykh uravnenii, Akad. nauk SSSR. Sib. otdnie. Sib. energ. in-t, ed. V.M. Matrosov, Nauka, Novosibirsk, 1980, 222 pp.

[8] V.N. Bukov, Vlozhenie sistem. Analiticheskii podkhod k analizu i sintezu matrichnykh sistem, Izd-vo nauch. literatury N. F. Bochkarevoi, Kaluga, 2006, 720 pp.

[9] N.N. Luzin, “K izucheniyu matrichnoi teorii differentsialnykh uravnenii”, Avtomatika i telemekhanika, 1940, no. 5, 3–66 | Zbl

[10] R.A. Frezer, V. Dunkan, A. Kollar, Teoriya matrits i ee prilozheniya k differentsialnym uravneniyam i dinamike, per. s angl. L.I. Golovinoi i A.K. Kolosovskoi, Izd-vo inostr. lit. (2-ya tip. Akad. nauk SSSR), M., 1950, 446 pp.