On finite semi-$\pi$-special groups
Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 88-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite group $G$ is called $\pi$-special if $G=O_{p_1}(G)\times\dots\times O_{p_n}(G)\times O_{\pi'}(G)$, where $\pi=\{p_1,\dots, p_n\}$. We say that a finite group $G$ is semi-$\pi$-special if the normalizer of every non-normal $\pi$-special subgroup of $G$ is $\pi$-special. We prove that if $G$ is not $\pi$-special but $N_G(A)$ is $\pi$-special for every subgroup $A$ of $G$ such that $A$ is either a $\pi'$-group or a $p$-group for some $p\in\pi$, then the following statements hold: (i) $G/F(G)$ is $\pi$-special. Hence $G$ has a Hall $\pi'$-subgroup $H$ and a soluble Hall $\pi$-subgroup $E$. (ii) If $G$ is not $p$-closed for each $p\in\pi$, then: (1) $H$ is normal in $G$ and $E$ is nilpotent. (2) $O_{p_1}(G)\times\dots\times O_{p_n}(G)\times H$ is a maximal $\pi$-special subgroup of $G$ and every minimal normal subgroup of $G$ is contained in $F(G)$.
Keywords: finite group, $\pi$-special group, Sylow subgroup, Hall subgroup.
Mots-clés : $\pi$-soluble group
@article{PFMT_2019_2_a12,
     author = {N. S. Kosenok and V. M. Selkin and V. N. Mitsik and V. N. Rizhik},
     title = {On finite semi-$\pi$-special groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {88--91},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_2_a12/}
}
TY  - JOUR
AU  - N. S. Kosenok
AU  - V. M. Selkin
AU  - V. N. Mitsik
AU  - V. N. Rizhik
TI  - On finite semi-$\pi$-special groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 88
EP  - 91
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_2_a12/
LA  - en
ID  - PFMT_2019_2_a12
ER  - 
%0 Journal Article
%A N. S. Kosenok
%A V. M. Selkin
%A V. N. Mitsik
%A V. N. Rizhik
%T On finite semi-$\pi$-special groups
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 88-91
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_2_a12/
%G en
%F PFMT_2019_2_a12
N. S. Kosenok; V. M. Selkin; V. N. Mitsik; V. N. Rizhik. On finite semi-$\pi$-special groups. Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 88-91. http://geodesic.mathdoc.fr/item/PFMT_2019_2_a12/

[1] A.N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[2] A.N. Skiba, “On some results in the theory of finite partially soluble groups”, Comm. Math. Stat., 4 (2016), 281–309 | DOI | MR | Zbl

[3] A.N. Skiba, “Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups”, J. Algebra, 495 (2018), 114–129 | DOI | MR | Zbl

[4] Chih-Han Sah, “On a generalization of finite nilpotent groups”, Math. Z., 68:1 (1957), 189–204 | DOI | MR | Zbl

[5] M. Weinstein (ed.), Between Nilpotent and Solvable, Polygonal Publishing House, 1982 | MR | Zbl

[6] N.M. Adarchenko, I.G. Blistets, V.N. Rizhik, “On finite semi-$p$-decomposable groups”, Problems of Physics, Mathematics and Technics, 2018, no. 1(34), 41–44 | MR | Zbl

[7] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[8] L.A. Shemetkov, Formations of finite groups, Nauka, Main Editorial Board for Physical and Mathematical Literature, M., 1978 | MR | Zbl

[9] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl