Carbon nanotubes: classification, features of synthesis, research methods and applications
Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 7-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

Modern classification of carbon nanotubes (CNT) is considered. A comparative analysis of the methods for their synthesis has been carried out; key technological parameters affecting the type and architecture of the formed CNTs have been identified. The most effective catalysts for the growth process of CNT have been established, the main methods of detection, the fields of application, and promising directions of introduction into production are given.
Mots-clés : carbon nanotubes, purification, application.
Keywords: synthesis, catalyst
@article{PFMT_2019_2_a0,
     author = {A. S. Rudenkov and M. A. Yarmolenko},
     title = {Carbon nanotubes: classification, features of synthesis, research methods and applications},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {7--14},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_2_a0/}
}
TY  - JOUR
AU  - A. S. Rudenkov
AU  - M. A. Yarmolenko
TI  - Carbon nanotubes: classification, features of synthesis, research methods and applications
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 7
EP  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_2_a0/
LA  - ru
ID  - PFMT_2019_2_a0
ER  - 
%0 Journal Article
%A A. S. Rudenkov
%A M. A. Yarmolenko
%T Carbon nanotubes: classification, features of synthesis, research methods and applications
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 7-14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_2_a0/
%G ru
%F PFMT_2019_2_a0
A. S. Rudenkov; M. A. Yarmolenko. Carbon nanotubes: classification, features of synthesis, research methods and applications. Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 7-14. http://geodesic.mathdoc.fr/item/PFMT_2019_2_a0/

[1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354 (1991), 56–58 | DOI

[2] L.V. Radushkevich, V. M. Lukyanovich, “O strukture ugleroda, obrazuyuschegosya pri termicheskom razlozhenii okisi ugleroda na zheleznom kontakte”, ZhFKh, 26 (1952), 88–95

[3] A. Oberlin, M. Endo, T. Koyama, “High resolution electron microscope observations of graphitized carbon fibers”, Carbon, 14 (1976), 133–135 | DOI

[4] R.A. Buyanov i dr., “Karbidnyi mekhanizm obrazovaniya uglerodistykh otlozhenii i ikh svoistva na zhelezokhromovykh katalizatorakh degidrirovaniya”, Kinetika i kataliz, 18 (1977), 1021–1028

[5] S.V. Mischenko, A.G. Tkachev, Uglerodnye nanomaterialy. Proizvodstvo, svoistva, primenenie, Mashinostroenie, M., 2008, 320 pp.

[6] P.A. Vityaz, N.A. Svidunovich, D.V. Kuis, Nanomaterialovedenie, uchebnoe posobie dlya studentov uchrezhdenii vysshego obrazovaniya po tekhnicheskim spetsialnostyam, Vysheishaya shkola, Minsk, 2015, 511 pp.

[7] S.N. Kolokoltsev, Uglerodnye materialy. Svoistva, tekhnologii, primeneniya, «Intellekt», Dolgoprudnyi, 2012, 296 pp.

[8] R.A. Brazhe, V.S. Nefedov, “Teploprovodnost uglerodnykh suprakristallicheskikh nanotrubok”, FTT, 54 (2012), 1435–1438

[9] D. Fulep, I. Zsoldos, I. Laszlo, “Self-organised formation of nanotubes from graphene ribbons. A molecular dynamics study”, Materials Research Express, 3 (2016), 105044–105055 | DOI

[10] R. Booker, E. Boysen, Nanotechnology for dummies, Wiley Publishing Inc, 2005, 366 pp.

[11] P.J. Boul et al., “Reversible sidewall functionalization of buckytubes”, Chemical Physics Letters, 310 (1999), 367–372 | DOI

[12] Z. Zhou et al., “Random networks of single-walled carbon nanotubes”, Physics Chemistry, V 108 (2004), 10751–10753

[13] R. Kassing, P. Petkov, W. Kulisch, C. Popov, Functional properties of nanostructured materials, Springer Netherlands, 2006, 460 pp.

[14] A. Aqel et al., “Carbon nanotubes, science and technology part (I) structure, synthesis and characterization”, Arabian Journal of Chemistry, 5 (2012), 1–23 | DOI

[15] T.W. Ebbesen, P. M. Ajayan, “Large-scale synthesis of carbon nanotubes”, Nature, 358 (1992), 220–222 | DOI

[16] C. Journet, P. Bernier, “Production of carbon nanotubes”, Applied Physics A – Material Science and Processing, 67 (1998), 1–9 | DOI

[17] C.-H. Kiang et al., “Carbon nanotubes with single-layer walls”, Carbon, 33 (1995), 903–914 | DOI

[18] Mubarak et al., “An overview on methods for the production of carbon nanotubes”, Journal of Industrial and Engineering Chemistry, 11 (2013), 1–12

[19] Z. Shi et al., “High yield synthesis and growth mechanism of carbon nanotubes”, Solid State Communications, 97 (1996), 371–375 | DOI

[20] T. Guo et al., “Catalytic growth of single-walled nanotubes by laser vaporization”, Chemical Physics Letters, 243 (1995), 49–54 | DOI

[21] E. Munoz et al., “Gas and pressure effects on the production of single-walled carbon nanotubes by laser ablation”, Carbon, 38 (2000), 1445–1451 | DOI

[22] M. Yudasaka et al., “Formation of Single-Wall Carbon Nanotubes: Comparison of CO$_2$ Laser Ablation and Nd:YAG Laser Ablation”, Journal of Physical Chemistry B, 103 (1999), 3576–3581 | DOI

[23] F. Kokai et al., “Growth dynamics of single-wall carbon nanotubes and nanohorn aggregates by CO$_2$ laser vaporization at room temperature”, Applied Surface Science, 197–198 (2002), 650–655 | DOI

[24] H.O. Pierson, Handbook of Chemical Vapor Deposition: Principles, Technology and Applications, Elsiever, 1999, 506 pp.

[25] N.M. Mubarak, F. Yusof, M.F. Alkhatib, “The production of carbon nanotubes using two-stage chemical vapor deposition and their potential use in protein purification”, Chemical Engineering Journal, 168 (2011), 461–469 | DOI

[26] K.A. Shah, B.A. Tali, “Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates”, Materials Science in Semiconductor Processing, 41 (2016), 67–82 | DOI

[27] R. Kamalakaran et al., “In-situ formation of carbon nanotubes in an alumina-nanotube composite by spray pyrolysis”, Carbon, 41 (2003), 2737–2741 | DOI

[28] N. Braidy, M.A. ElKhakani, G.A. Botton, “Single-wall carbon nanotubes synthesis by means of UV laser vaporization”, Chemical Physics Letters, 354 (2002), 88–92 | DOI

[29] M. Endo et al., “The production and structure of pyrolytic carbon nanotubes (PCNTs)”, Journal of Physics and Chemistry of Solids, 54 (1993), 1841–1848 | DOI

[30] A. Thess et al., “Crystallineropes of metallic carbon nanotubes”, Science, 273 (1996), 483–487 | DOI

[31] A.J. Hart, A.H. Slocum, “Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst”, The Journal of Physical Chemistry B, 110 (2006), 8250–8257 | DOI

[32] F. Ding et al., “The importance of strong carbon-metal adhesion for catalytic nucleation of single-walled carbon nanotubes”, Nano Letters, 8 (2008), 463–468 | DOI

[33] W. Yang, Y. Feng, W. Chu, “Catalytic chemical vapor deposition of methane to carbon nanotubes: copper promote defect of Ni/MgO catalysts”, Journal of Nanotechnology, 8 (2014), 547030–547035

[34] M.P. Mendoza et al., “Studies on carbon nanotubes synthesis via methane CVD process using Co catalyst on carbon supports”, Nanotechnology, 16 (2005), 224–229

[35] T. Shiroishi et al., “Low temperature growth of carbon nanotube by thermal CVD with Fe Zr N catalyst”, IEEE Conference, 65 (2003), 13–14

[36] S.Y. Lee, M. Yamada, M. Miyake, “Synthesis of carbon nanotubes and carbon nanofilaments over palladium supported catalysts”, Science and Technology of Advanced Materials, 6 (2005), 420–426 | DOI

[37] X. Li et al., “Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection”, Communication, 129 (2007), 15770–15775

[38] M. He et al., “Growth Mechanism of Single-Walled Carbon Nanotubes on Iron-Copper Catalyst and Chirality Studies by Electron Diffraction”, Chemistry Materials, 24 (2012), 1796–1801 | DOI

[39] D. Takagi et al., “Carbon nanotube growth from semiconductor nanoparticles”, Nano Letters, 7 (2007), 2272–2275 | DOI

[40] D. Takagi et al., “Carbon nanotube growth from diamond”, Communication, 131 (2009), 6922–6923

[41] S. Han, X. Liu, C. Zhou, “Template-free directional growth of single-walled carbon nanotubes on a-andr-plane sapphire”, Communication, 127 (2005), 5294–5295

[42] M. Aksak, Y. Selamet, “Carbon nanotube diameter tuning using hydrogen amount and temperature on SiO$_2$/Si substrates”, Applied Physics A, 100 (2010), 213–222 | DOI

[43] M. Karima, A. Badiei, P. Zarabadi-Poor, “The impact of cadmium loading in Fe/alumina and synthes is temperature on carbon nanotubes growth by chemical vapour deposition method”, Journal of Sciences, Islamic Republic of Iran, 26 (2015), 17–24

[44] R.A. Harutyunyan et al., “CVD synthesis of single wall carbon nanotubes”, Nano Letters, 2 (2002), 525–530 | DOI

[45] E.J. Lee, J. Park, J.A. Yu, “Catalyst effect on carbon nanotubes synthesized by thermal chemical vapour deposition”, Chemical Physics Letters, 360 (2002), 250–255 | DOI

[46] W. Yang, Y. Feng, W. Chu, “Catalytic chemical vapor deposition of methane to carbon nanotubes: copper promote defect of Ni/MgO catalysts”, Journal of Nanotechnology, 8 (2014), 547030–547035

[47] Y. Zhao et al., “Large scale synthesis and characterization of super-bundle singlewalled carbon nanotubes by water assisted chemical vapour deposition”, RSC Advances, 5 (2015), 30564–30569 | DOI

[48] A.E. Awadallah et al., “Synthesis of carbon nanotubes by CCVD of natural gas using hydrotreating catalysts”, Egyptian Journal of Petroleum, 21 (2012), 101–107 | DOI | MR

[49] P.J.F. Harris, “Solid state growth mechanisms for carbon nanotubes”, Carbon, 45 (2007), 229–239 | DOI

[50] F. Ding, A.R. Harutyunyan, B.I. Yakobson, “Dislocation theory of chiralitycontrolled nanotube growth PNAS”, PNAS, 106 (2009), 2506–2509 | DOI

[51] V.A. Nebolsin, A.Yu. Vorobev, M.Yu. Chaika, “Rost uglerodnykh nanotrubok v protsesse kataliticheskogo piroliza uglevodorodov”, Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 8 (2012), 88–90

[52] H. Kanzow, A. Ding, “Formation mechanism of single wall carbone nanotubes on liquid-metal particles”, Physics Review B, 60 (1999), 11180–11186 | DOI

[53] P.M. Ajayan, T. Ichihashi, S. Iijima, “Distribution of pentagons and shapes in carbon nanotubes and nanoparticles”, Chemical Physics Letters, 202 (1993), 384–388 | DOI

[54] Y. Sito et al., “Growth and structure of graphitic tubules and polyhedral particles in arc-discharge”, Chemical Physics Letters, 204 (1993), 277–282 | DOI

[55] V.P. Kuznetsov, A.N. Usoltseva, I.N. Mazov, “Obschie zakonomernosti formirovaniya uglerodnykh struktur i nitevidnykh kristallov karbida kremniya na poverkhnosti metallicheskogo katalizatora”, Rossiiskii khimicheskii zhurnal, XLVIII (2004), 37–45

[56] J. Xu et al., “A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism”, Chemosphere, 195 (2018), 351–364 | DOI

[57] P.-X. Hou, Ch. Liu, H.-M. Cheng, “Purification of carbon nanotubes”, Carbon, 46 (2008), 2003–2025 | DOI

[58] P. Chen et al., “Improved fracture toughness of CNTs/SiC composites by HF treatment”, Journal of Alloys and Compounds, 730 (2018), 42–46 | DOI

[59] L. Shi et al., “Microwave-assisted hydrogen releasing from liquid organic hydride over Pt/CNT catalyst: Effects of oxidation treatment of CNTs”, Catalysis Today, 276 (2016), 121–127 | DOI

[60] F.V. Ferreira et al., “Correlation of surface treatment, dispersion and mechanical properties of HDPE/CNT nanocomposites”, Applied Surface Science, 389 (2016), 921–929 | DOI

[61] E. Borowiak-Palen et al., “Reduced diameter distribution of singlewall carbon nanotubes by selective oxidation”, Chemical Physics Letters, 363 (2002), 567–572 | DOI

[62] H. Kajiura et al., “High-quality single-walled carbon nanotubes from arc-produced soot”, Chemical Physics Letters, 363 (2002), 586–592 | DOI

[63] K.B. Shelimov et al., “Purification of single-wall carbon nanotubes by ultrasonically assisted filtration”, Chemical Physics Letters, 282 (1998), 429–434 | DOI

[64] L. Thien-Nga et al., “Mechanical purification of single-walled carbon nanotube bundles from catalytic particles”, Nano Letters, 2 (2002), 1349–1352 | DOI

[65] I. W. Chiang et al., “Purification and characterization of singlewall carbon nanotubes”, The Journal of Physical Chemistry B, 105 (2001), 1157–1161 | DOI

[66] B.-J. Kim, J.-P. Kim, J.-S. Park, “Effects of Al interlayer coating and thermal treatment on electron emission characteristics of carbon nanotubes deposited by electrophoretic method”, Nanoscale Research Letters, 9 (2014), 236–242 | DOI

[67] M. Ouyang et al., “Energy gaps in «metallic» single-walled carbon nanotubes”, Science, 292 (2001), 702–706 | DOI

[68] W.Z. Zhu et al., “Characterization of multiwalled carbon nanotubes prepared by carbon arc cathode deposit”, Materials Chemistry and Physics, 82 (2003), 638–647 | DOI

[69] M.S. Dresselhaus et al., “Raman spectroscopy of carbon nanotubes”, Physics Reports, 409 (2005), 47–99 | DOI

[70] O.S. Timofeev, N.G. Chechenin, “Kombinatsionnoe rasseyanie UNT, poluchennykh razlichnymi metodami”, Trudy XII Mezhvuzovskoi nauchnoi shkoly molodykh spetsialistov «Kontsentrirovannye potoki energii v kosmicheskoi tekhnike, elektronike, ekologii i meditsine» (Moskva 21–22 noyabrya 2011), NIIYaF MGU, M., 2011, 118–123

[71] C. Herrero-Latorre et al., “Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: A review”, Analytica Chimica Acta, 853 (2015), 77–94 | DOI

[72] W. Bauhofer, J.Z. Kovacs, “A review and analysis of electrical percolation in carbon nanotube polymer composites”, Composites Science and Technology, 69 (2009), 1486–1498 | DOI

[73] M.F.L. Volder et al., “Carbon nanotubes: present and future commercial applications”, Science, 339 (2013), 535–539 | DOI

[74] H.G. Chae et al., “Carbon nanotube reinforced small diameter polyacrylonitrile based carbon fiber”, Composites Science and Technology, 69 (2009), 406–413 | DOI

[75] J. Suhr et al., “Viscoelasticity in carbon nanotube composites”, Nature Materials, 4 (2005), 134–137 | DOI

[76] A. Kausar, I. Rafique, B. Muhammad, “Review of applications of polymer/carbon nanotubes and epoxy / CNT composites”, Polymerplastics Technology and Engineering, 55 (2016), 1167–1191 | DOI

[77] Z. Wu et al., “Transparent, conductive carbon nanotube films”, Science, 305 (2004), 1273–1276 | DOI

[78] D.M. Sun et al., “Flexible high-performance carbon nanotube integrated circuits”, Nature Nanotechnology, 6 (2011), 156–161 | DOI

[79] N.E. Kazantseva et al., “Magnetic materials based on manganese-zinc ferrite with surface-organized polyaniline coating”, Journal of Magnetism and Magnetic Materials, 301 (2006), 155–165 | DOI

[80] P.R. Thakre, Y. Bisrat, D.C. Lagoudas, “Electrical and mechanical properties of carbon nanotube / epoxy nanocomposites”, Journal of Applied Polymer Science, 116 (2010), 191–202 | DOI

[81] L. Dai et al., “Carbon nanomaterials for advanced energy conversion and storage”, Small, 8 (2012), 1130–1166 | DOI

[82] A.R. Kohler et al., “Studying the potential release of carbon nanotubes throughout the application life cycle”, Journal of Cleaner Production, 16 (2008), 927–937 | DOI

[83] J. Kong et al., “Nanotube Molecular Wires as Chemical Sensors”, Science, 287 (2000), 622–625 | DOI

[84] A. Star et al., “Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors”, PNAS, 103 (2006), 921–926 | DOI

[85] S.Y. Hong et al., “Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging”, Nature Materials, 9 (2010), 485–490 | DOI

[86] C.A. Poland et al., “Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study”, Nature Nanotechnology, 3 (2008), 423–428 | DOI

[87] G.M. Mutlu et al., “Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity”, Nano Letters, 10 (2010), 1664–1670 | DOI