Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2019_2_a0, author = {A. S. Rudenkov and M. A. Yarmolenko}, title = {Carbon nanotubes: classification, features of synthesis, research methods and applications}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {7--14}, publisher = {mathdoc}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2019_2_a0/} }
TY - JOUR AU - A. S. Rudenkov AU - M. A. Yarmolenko TI - Carbon nanotubes: classification, features of synthesis, research methods and applications JO - Problemy fiziki, matematiki i tehniki PY - 2019 SP - 7 EP - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2019_2_a0/ LA - ru ID - PFMT_2019_2_a0 ER -
A. S. Rudenkov; M. A. Yarmolenko. Carbon nanotubes: classification, features of synthesis, research methods and applications. Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 7-14. http://geodesic.mathdoc.fr/item/PFMT_2019_2_a0/
[1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354 (1991), 56–58 | DOI
[2] L.V. Radushkevich, V. M. Lukyanovich, “O strukture ugleroda, obrazuyuschegosya pri termicheskom razlozhenii okisi ugleroda na zheleznom kontakte”, ZhFKh, 26 (1952), 88–95
[3] A. Oberlin, M. Endo, T. Koyama, “High resolution electron microscope observations of graphitized carbon fibers”, Carbon, 14 (1976), 133–135 | DOI
[4] R.A. Buyanov i dr., “Karbidnyi mekhanizm obrazovaniya uglerodistykh otlozhenii i ikh svoistva na zhelezokhromovykh katalizatorakh degidrirovaniya”, Kinetika i kataliz, 18 (1977), 1021–1028
[5] S.V. Mischenko, A.G. Tkachev, Uglerodnye nanomaterialy. Proizvodstvo, svoistva, primenenie, Mashinostroenie, M., 2008, 320 pp.
[6] P.A. Vityaz, N.A. Svidunovich, D.V. Kuis, Nanomaterialovedenie, uchebnoe posobie dlya studentov uchrezhdenii vysshego obrazovaniya po tekhnicheskim spetsialnostyam, Vysheishaya shkola, Minsk, 2015, 511 pp.
[7] S.N. Kolokoltsev, Uglerodnye materialy. Svoistva, tekhnologii, primeneniya, «Intellekt», Dolgoprudnyi, 2012, 296 pp.
[8] R.A. Brazhe, V.S. Nefedov, “Teploprovodnost uglerodnykh suprakristallicheskikh nanotrubok”, FTT, 54 (2012), 1435–1438
[9] D. Fulep, I. Zsoldos, I. Laszlo, “Self-organised formation of nanotubes from graphene ribbons. A molecular dynamics study”, Materials Research Express, 3 (2016), 105044–105055 | DOI
[10] R. Booker, E. Boysen, Nanotechnology for dummies, Wiley Publishing Inc, 2005, 366 pp.
[11] P.J. Boul et al., “Reversible sidewall functionalization of buckytubes”, Chemical Physics Letters, 310 (1999), 367–372 | DOI
[12] Z. Zhou et al., “Random networks of single-walled carbon nanotubes”, Physics Chemistry, V 108 (2004), 10751–10753
[13] R. Kassing, P. Petkov, W. Kulisch, C. Popov, Functional properties of nanostructured materials, Springer Netherlands, 2006, 460 pp.
[14] A. Aqel et al., “Carbon nanotubes, science and technology part (I) structure, synthesis and characterization”, Arabian Journal of Chemistry, 5 (2012), 1–23 | DOI
[15] T.W. Ebbesen, P. M. Ajayan, “Large-scale synthesis of carbon nanotubes”, Nature, 358 (1992), 220–222 | DOI
[16] C. Journet, P. Bernier, “Production of carbon nanotubes”, Applied Physics A – Material Science and Processing, 67 (1998), 1–9 | DOI
[17] C.-H. Kiang et al., “Carbon nanotubes with single-layer walls”, Carbon, 33 (1995), 903–914 | DOI
[18] Mubarak et al., “An overview on methods for the production of carbon nanotubes”, Journal of Industrial and Engineering Chemistry, 11 (2013), 1–12
[19] Z. Shi et al., “High yield synthesis and growth mechanism of carbon nanotubes”, Solid State Communications, 97 (1996), 371–375 | DOI
[20] T. Guo et al., “Catalytic growth of single-walled nanotubes by laser vaporization”, Chemical Physics Letters, 243 (1995), 49–54 | DOI
[21] E. Munoz et al., “Gas and pressure effects on the production of single-walled carbon nanotubes by laser ablation”, Carbon, 38 (2000), 1445–1451 | DOI
[22] M. Yudasaka et al., “Formation of Single-Wall Carbon Nanotubes: Comparison of CO$_2$ Laser Ablation and Nd:YAG Laser Ablation”, Journal of Physical Chemistry B, 103 (1999), 3576–3581 | DOI
[23] F. Kokai et al., “Growth dynamics of single-wall carbon nanotubes and nanohorn aggregates by CO$_2$ laser vaporization at room temperature”, Applied Surface Science, 197–198 (2002), 650–655 | DOI
[24] H.O. Pierson, Handbook of Chemical Vapor Deposition: Principles, Technology and Applications, Elsiever, 1999, 506 pp.
[25] N.M. Mubarak, F. Yusof, M.F. Alkhatib, “The production of carbon nanotubes using two-stage chemical vapor deposition and their potential use in protein purification”, Chemical Engineering Journal, 168 (2011), 461–469 | DOI
[26] K.A. Shah, B.A. Tali, “Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates”, Materials Science in Semiconductor Processing, 41 (2016), 67–82 | DOI
[27] R. Kamalakaran et al., “In-situ formation of carbon nanotubes in an alumina-nanotube composite by spray pyrolysis”, Carbon, 41 (2003), 2737–2741 | DOI
[28] N. Braidy, M.A. ElKhakani, G.A. Botton, “Single-wall carbon nanotubes synthesis by means of UV laser vaporization”, Chemical Physics Letters, 354 (2002), 88–92 | DOI
[29] M. Endo et al., “The production and structure of pyrolytic carbon nanotubes (PCNTs)”, Journal of Physics and Chemistry of Solids, 54 (1993), 1841–1848 | DOI
[30] A. Thess et al., “Crystallineropes of metallic carbon nanotubes”, Science, 273 (1996), 483–487 | DOI
[31] A.J. Hart, A.H. Slocum, “Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst”, The Journal of Physical Chemistry B, 110 (2006), 8250–8257 | DOI
[32] F. Ding et al., “The importance of strong carbon-metal adhesion for catalytic nucleation of single-walled carbon nanotubes”, Nano Letters, 8 (2008), 463–468 | DOI
[33] W. Yang, Y. Feng, W. Chu, “Catalytic chemical vapor deposition of methane to carbon nanotubes: copper promote defect of Ni/MgO catalysts”, Journal of Nanotechnology, 8 (2014), 547030–547035
[34] M.P. Mendoza et al., “Studies on carbon nanotubes synthesis via methane CVD process using Co catalyst on carbon supports”, Nanotechnology, 16 (2005), 224–229
[35] T. Shiroishi et al., “Low temperature growth of carbon nanotube by thermal CVD with Fe Zr N catalyst”, IEEE Conference, 65 (2003), 13–14
[36] S.Y. Lee, M. Yamada, M. Miyake, “Synthesis of carbon nanotubes and carbon nanofilaments over palladium supported catalysts”, Science and Technology of Advanced Materials, 6 (2005), 420–426 | DOI
[37] X. Li et al., “Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection”, Communication, 129 (2007), 15770–15775
[38] M. He et al., “Growth Mechanism of Single-Walled Carbon Nanotubes on Iron-Copper Catalyst and Chirality Studies by Electron Diffraction”, Chemistry Materials, 24 (2012), 1796–1801 | DOI
[39] D. Takagi et al., “Carbon nanotube growth from semiconductor nanoparticles”, Nano Letters, 7 (2007), 2272–2275 | DOI
[40] D. Takagi et al., “Carbon nanotube growth from diamond”, Communication, 131 (2009), 6922–6923
[41] S. Han, X. Liu, C. Zhou, “Template-free directional growth of single-walled carbon nanotubes on a-andr-plane sapphire”, Communication, 127 (2005), 5294–5295
[42] M. Aksak, Y. Selamet, “Carbon nanotube diameter tuning using hydrogen amount and temperature on SiO$_2$/Si substrates”, Applied Physics A, 100 (2010), 213–222 | DOI
[43] M. Karima, A. Badiei, P. Zarabadi-Poor, “The impact of cadmium loading in Fe/alumina and synthes is temperature on carbon nanotubes growth by chemical vapour deposition method”, Journal of Sciences, Islamic Republic of Iran, 26 (2015), 17–24
[44] R.A. Harutyunyan et al., “CVD synthesis of single wall carbon nanotubes”, Nano Letters, 2 (2002), 525–530 | DOI
[45] E.J. Lee, J. Park, J.A. Yu, “Catalyst effect on carbon nanotubes synthesized by thermal chemical vapour deposition”, Chemical Physics Letters, 360 (2002), 250–255 | DOI
[46] W. Yang, Y. Feng, W. Chu, “Catalytic chemical vapor deposition of methane to carbon nanotubes: copper promote defect of Ni/MgO catalysts”, Journal of Nanotechnology, 8 (2014), 547030–547035
[47] Y. Zhao et al., “Large scale synthesis and characterization of super-bundle singlewalled carbon nanotubes by water assisted chemical vapour deposition”, RSC Advances, 5 (2015), 30564–30569 | DOI
[48] A.E. Awadallah et al., “Synthesis of carbon nanotubes by CCVD of natural gas using hydrotreating catalysts”, Egyptian Journal of Petroleum, 21 (2012), 101–107 | DOI | MR
[49] P.J.F. Harris, “Solid state growth mechanisms for carbon nanotubes”, Carbon, 45 (2007), 229–239 | DOI
[50] F. Ding, A.R. Harutyunyan, B.I. Yakobson, “Dislocation theory of chiralitycontrolled nanotube growth PNAS”, PNAS, 106 (2009), 2506–2509 | DOI
[51] V.A. Nebolsin, A.Yu. Vorobev, M.Yu. Chaika, “Rost uglerodnykh nanotrubok v protsesse kataliticheskogo piroliza uglevodorodov”, Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 8 (2012), 88–90
[52] H. Kanzow, A. Ding, “Formation mechanism of single wall carbone nanotubes on liquid-metal particles”, Physics Review B, 60 (1999), 11180–11186 | DOI
[53] P.M. Ajayan, T. Ichihashi, S. Iijima, “Distribution of pentagons and shapes in carbon nanotubes and nanoparticles”, Chemical Physics Letters, 202 (1993), 384–388 | DOI
[54] Y. Sito et al., “Growth and structure of graphitic tubules and polyhedral particles in arc-discharge”, Chemical Physics Letters, 204 (1993), 277–282 | DOI
[55] V.P. Kuznetsov, A.N. Usoltseva, I.N. Mazov, “Obschie zakonomernosti formirovaniya uglerodnykh struktur i nitevidnykh kristallov karbida kremniya na poverkhnosti metallicheskogo katalizatora”, Rossiiskii khimicheskii zhurnal, XLVIII (2004), 37–45
[56] J. Xu et al., “A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism”, Chemosphere, 195 (2018), 351–364 | DOI
[57] P.-X. Hou, Ch. Liu, H.-M. Cheng, “Purification of carbon nanotubes”, Carbon, 46 (2008), 2003–2025 | DOI
[58] P. Chen et al., “Improved fracture toughness of CNTs/SiC composites by HF treatment”, Journal of Alloys and Compounds, 730 (2018), 42–46 | DOI
[59] L. Shi et al., “Microwave-assisted hydrogen releasing from liquid organic hydride over Pt/CNT catalyst: Effects of oxidation treatment of CNTs”, Catalysis Today, 276 (2016), 121–127 | DOI
[60] F.V. Ferreira et al., “Correlation of surface treatment, dispersion and mechanical properties of HDPE/CNT nanocomposites”, Applied Surface Science, 389 (2016), 921–929 | DOI
[61] E. Borowiak-Palen et al., “Reduced diameter distribution of singlewall carbon nanotubes by selective oxidation”, Chemical Physics Letters, 363 (2002), 567–572 | DOI
[62] H. Kajiura et al., “High-quality single-walled carbon nanotubes from arc-produced soot”, Chemical Physics Letters, 363 (2002), 586–592 | DOI
[63] K.B. Shelimov et al., “Purification of single-wall carbon nanotubes by ultrasonically assisted filtration”, Chemical Physics Letters, 282 (1998), 429–434 | DOI
[64] L. Thien-Nga et al., “Mechanical purification of single-walled carbon nanotube bundles from catalytic particles”, Nano Letters, 2 (2002), 1349–1352 | DOI
[65] I. W. Chiang et al., “Purification and characterization of singlewall carbon nanotubes”, The Journal of Physical Chemistry B, 105 (2001), 1157–1161 | DOI
[66] B.-J. Kim, J.-P. Kim, J.-S. Park, “Effects of Al interlayer coating and thermal treatment on electron emission characteristics of carbon nanotubes deposited by electrophoretic method”, Nanoscale Research Letters, 9 (2014), 236–242 | DOI
[67] M. Ouyang et al., “Energy gaps in «metallic» single-walled carbon nanotubes”, Science, 292 (2001), 702–706 | DOI
[68] W.Z. Zhu et al., “Characterization of multiwalled carbon nanotubes prepared by carbon arc cathode deposit”, Materials Chemistry and Physics, 82 (2003), 638–647 | DOI
[69] M.S. Dresselhaus et al., “Raman spectroscopy of carbon nanotubes”, Physics Reports, 409 (2005), 47–99 | DOI
[70] O.S. Timofeev, N.G. Chechenin, “Kombinatsionnoe rasseyanie UNT, poluchennykh razlichnymi metodami”, Trudy XII Mezhvuzovskoi nauchnoi shkoly molodykh spetsialistov «Kontsentrirovannye potoki energii v kosmicheskoi tekhnike, elektronike, ekologii i meditsine» (Moskva 21–22 noyabrya 2011), NIIYaF MGU, M., 2011, 118–123
[71] C. Herrero-Latorre et al., “Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: A review”, Analytica Chimica Acta, 853 (2015), 77–94 | DOI
[72] W. Bauhofer, J.Z. Kovacs, “A review and analysis of electrical percolation in carbon nanotube polymer composites”, Composites Science and Technology, 69 (2009), 1486–1498 | DOI
[73] M.F.L. Volder et al., “Carbon nanotubes: present and future commercial applications”, Science, 339 (2013), 535–539 | DOI
[74] H.G. Chae et al., “Carbon nanotube reinforced small diameter polyacrylonitrile based carbon fiber”, Composites Science and Technology, 69 (2009), 406–413 | DOI
[75] J. Suhr et al., “Viscoelasticity in carbon nanotube composites”, Nature Materials, 4 (2005), 134–137 | DOI
[76] A. Kausar, I. Rafique, B. Muhammad, “Review of applications of polymer/carbon nanotubes and epoxy / CNT composites”, Polymerplastics Technology and Engineering, 55 (2016), 1167–1191 | DOI
[77] Z. Wu et al., “Transparent, conductive carbon nanotube films”, Science, 305 (2004), 1273–1276 | DOI
[78] D.M. Sun et al., “Flexible high-performance carbon nanotube integrated circuits”, Nature Nanotechnology, 6 (2011), 156–161 | DOI
[79] N.E. Kazantseva et al., “Magnetic materials based on manganese-zinc ferrite with surface-organized polyaniline coating”, Journal of Magnetism and Magnetic Materials, 301 (2006), 155–165 | DOI
[80] P.R. Thakre, Y. Bisrat, D.C. Lagoudas, “Electrical and mechanical properties of carbon nanotube / epoxy nanocomposites”, Journal of Applied Polymer Science, 116 (2010), 191–202 | DOI
[81] L. Dai et al., “Carbon nanomaterials for advanced energy conversion and storage”, Small, 8 (2012), 1130–1166 | DOI
[82] A.R. Kohler et al., “Studying the potential release of carbon nanotubes throughout the application life cycle”, Journal of Cleaner Production, 16 (2008), 927–937 | DOI
[83] J. Kong et al., “Nanotube Molecular Wires as Chemical Sensors”, Science, 287 (2000), 622–625 | DOI
[84] A. Star et al., “Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors”, PNAS, 103 (2006), 921–926 | DOI
[85] S.Y. Hong et al., “Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging”, Nature Materials, 9 (2010), 485–490 | DOI
[86] C.A. Poland et al., “Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study”, Nature Nanotechnology, 3 (2008), 423–428 | DOI
[87] G.M. Mutlu et al., “Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity”, Nano Letters, 10 (2010), 1664–1670 | DOI