On some characterization of general Frattini subgroup of finite soluble group
Problemy fiziki, matematiki i tehniki, no. 1 (2019), pp. 50-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite soluble group, $\theta$ be a regular subgroup $m$-functor, and $\Phi_\theta(G)$ be the intersection of all maximal $\theta$-subgroups of $G$. Let $n$ be the length of a $G$-series of the group $\mathrm{Soc}(G/\Phi_\theta(G))$, and $k$ be the number of central $G$-chief factors of this series. We prove that in this case $G$ contains $4n-3k$ maximal $\theta$-subgroups whose intersection is $\Phi_\theta(G)$.
Keywords: finite soluble group, maximal subgroup, Frattini $\theta$-subgroup.
@article{PFMT_2019_1_a8,
     author = {S. F. Kamornikov and O. L. Shemetkova},
     title = {On some characterization of general {Frattini} subgroup of finite soluble group},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {50--55},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_1_a8/}
}
TY  - JOUR
AU  - S. F. Kamornikov
AU  - O. L. Shemetkova
TI  - On some characterization of general Frattini subgroup of finite soluble group
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 50
EP  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_1_a8/
LA  - ru
ID  - PFMT_2019_1_a8
ER  - 
%0 Journal Article
%A S. F. Kamornikov
%A O. L. Shemetkova
%T On some characterization of general Frattini subgroup of finite soluble group
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 50-55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_1_a8/
%G ru
%F PFMT_2019_1_a8
S. F. Kamornikov; O. L. Shemetkova. On some characterization of general Frattini subgroup of finite soluble group. Problemy fiziki, matematiki i tehniki, no. 1 (2019), pp. 50-55. http://geodesic.mathdoc.fr/item/PFMT_2019_1_a8/

[1] S.F. Kamornikov, M.V. Selkin, Podgruppovye funktory i klassy konechnykh grupp, Belorusskaya nauka, Mn., 2003, 256 pp.

[2] S.F. Kamornikov, “Intersections of prefrattini subgroups in finite soluble groups”, Int. J. Group Theory, 6:2 (2017), 1–5 | MR

[3] V.S. Monakhov, “Zamechanie o maksimalnykh podgruppakh konechnykh grupp”, Dokl. NAN Belarusi, 47:4 (2003), 31–33

[4] S.F. Kamornikov, “Ob odnoi kharakterizatsii podgruppy Frattini konechnoi razreshimoi gruppy”, Trudy Instituta matematiki i mekhaniki UrO RAN, 23, no. 4, 2017, 176–180

[5] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New-York, 1992, 891 pp. | MR

[6] L.A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp.

[7] S.F. Kamornikov, L.A. Shemetkov, “$\mathfrak{X}$-korona konechnoi razreshimoi gruppy”, Algebra i logika, 49:5 (2010), 591–614 | Zbl

[8] L.P. Avdashkova, S.F. Kamornikov, O.L. Shemetkova, “Ob odnom svoistve podgrupp frattinieva tipa”, Izvestiya NAN Belarusi. Seriya fiz.-mat. nauk, 2014, no. 3, 38–43

[9] R. Baer, “Classes of finite groups and their properties”, Illinois J. Math., 1 (1957), 115–187 | DOI | MR | Zbl

[10] W. Gaschütz, “Über die $\Phi$-Untergruppen endlicher Gruppen”, Math. Z., 58 (1953), 160–170 | DOI | MR | Zbl

[11] W.E. Deskins, “A condition for the solvability of a finite group”, Ill. J. Math., 5:2 (1961), 306–313 | DOI | MR | Zbl

[12] S.F. Kamornikov, “O yadre $p$-prefrattinievoi podgruppy konechnoi razreshimoi gruppy”, Problemy fiziki, matematiki i tekhniki, 2018, no. 2 (35), 46–50